Functional data analysis has attracted considerable interest and is facing new challenges, one of which is the increasingly available data in a streaming manner. In this article we develop an online nonparametric method to dynamically update the estimates of mean and covariance functions for functional data. The kernel-type estimates can be decomposed into two sufficient statistics depending on the data-driven bandwidths. We propose to approximate the future optimal bandwidths by a sequence of dynamically changing candidates and combine the corresponding statistics across blocks to form the updated estimation. The proposed online method is easy to compute based on the stored sufficient statistics and the current data block. We derive the asymptotic normality and, more importantly, the relative efficiency lower bounds of the online estimates of mean and covariance functions. This provides insight into the relationship between estimation accuracy and computational cost driven by the length of candidate bandwidth sequence. Simulations and real data examples are provided to support such findings.
A functional dynamic factor model for time-dependent functional data is proposed. We decompose a functional time series into a predictive low-dimensional common component consisting of a finite number of factors and an infinite-dimensional idiosyncratic component that has no predictive power. The conditions under which all model parameters, including the number of factors, become identifiable are discussed. Our identification results lead to a simple-to-use two-stage estimation procedure based on functional principal components. As part of our estimation procedure, we solve the separation problem between the common and idiosyncratic functional components. In particular, we obtain a consistent information criterion that provides joint estimates of the number of factors and dynamic lags of the common component. Finally, we illustrate the applicability of our method in a simulation study and to the problem of modeling and predicting yield curves. In an out-of-sample experiment, we demonstrate that our model performs well compared to the widely used term structure Nelson-Siegel model for yield curves.
The goal of regression is to recover an unknown underlying function that best links a set of predictors to an outcome from noisy observations. In nonparametric regression, one assumes that the regression function belongs to a pre-specified infinite-dimensional function space (the hypothesis space). In the online setting, when the observations come in a stream, it is computationally-preferable to iteratively update an estimate rather than refitting an entire model repeatedly. Inspired by nonparametric sieve estimation and stochastic approximation methods, we propose a sieve stochastic gradient descent estimator (Sieve-SGD) when the hypothesis space is a Sobolev ellipsoid. We show that Sieve-SGD has rate-optimal mean squared error (MSE) under a set of simple and direct conditions. The proposed estimator can be constructed with a low computational (time and space) expense: We also formally show that Sieve-SGD requires almost minimal memory usage among all statistically rate-optimal estimators.
We consider the problem of variance reduction in randomized controlled trials, through the use of covariates correlated with the outcome but independent of the treatment. We propose a machine learning regression-adjusted treatment effect estimator, which we call MLRATE. MLRATE uses machine learning predictors of the outcome to reduce estimator variance. It employs cross-fitting to avoid overfitting biases, and we prove consistency and asymptotic normality under general conditions. MLRATE is robust to poor predictions from the machine learning step: if the predictions are uncorrelated with the outcomes, the estimator performs asymptotically no worse than the standard difference-in-means estimator, while if predictions are highly correlated with outcomes, the efficiency gains are large. In A/A tests, for a set of 48 outcome metrics commonly monitored in Facebook experiments the estimator has over 70% lower variance than the simple difference-in-means estimator, and about 19% lower variance than the common univariate procedure which adjusts only for pre-experiment values of the outcome.
A new clustering accuracy measure is proposed to determine the unknown number of clusters and to assess the quality of clustering of a data set given in any dimensional space. Our validity index applies the classical nonparametric univariate kernel density estimation method to the interpoint distances computed between the members of data. Being based on interpoint distances, it is free of the curse of dimensionality and therefore efficiently computable for high-dimensional situations where the number of study variables can be larger than the sample size. The proposed measure is compatible with any clustering algorithm and with every kind of data set where the interpoint distance measure can be defined to have a density function. Simulation study proves its superiority over widely used cluster validity indices like the average silhouette width and the Dunn index, whereas its applicability is shown with respect to a high-dimensional Biostatistical study of Alon data set and a large Astrostatistical application of time series with light curves of new variable stars.
Artificial Neural Networks (ANNs) can be viewed as nonlinear sieves that can approximate complex functions of high dimensional variables more effectively than linear sieves. We investigate the computational performance of various ANNs in nonparametric instrumental variables (NPIV) models of moderately high dimensional covariates that are relevant to empirical economics. We present two efficient procedures for estimation and inference on a weighted average derivative (WAD): an orthogonalized plug-in with optimally-weighted sieve minimum distance (OP-OSMD) procedure and a sieve efficient score (ES) procedure. Both estimators for WAD use ANN sieves to approximate the unknown NPIV function and are root-n asymptotically normal and first-order equivalent. We provide a detailed practitioner's recipe for implementing both efficient procedures. This involves the choice of tuning parameters for the unknown NPIV, the conditional expectations and the optimal weighting function that are present in both procedures but also the choice of tuning parameters for the unknown Riesz representer in the ES procedure. We compare their finite-sample performances in various simulation designs that involve smooth NPIV function of up to 13 continuous covariates, different nonlinearities and covariate correlations. Some Monte Carlo findings include: 1) tuning and optimization are more delicate in ANN estimation; 2) given proper tuning, both ANN estimators with various architectures can perform well; 3) easier to tune ANN OP-OSMD estimators than ANN ES estimators; 4) stable inferences are more difficult to achieve with ANN (than spline) estimators; 5) there are gaps between current implementations and approximation theories. Finally, we apply ANN NPIV to estimate average partial derivatives in two empirical demand examples with multivariate covariates.
The entropy is a measure of uncertainty that plays a central role in information theory. When the distribution of the data is unknown, an estimate of the entropy needs be obtained from the data sample itself. We propose a semi-parametric estimate, based on a mixture model approximation of the distribution of interest. The estimate can rely on any type of mixture, but we focus on Gaussian mixture model to demonstrate its accuracy and versatility. Performance of the proposed approach is assessed through a series of simulation studies. We also illustrate its use on two real-life data examples.
Behavioral science researchers have shown strong interest in disaggregating within-person relations from between-person differences (stable traits) using longitudinal data. In this paper, we propose a method of within-person variability score-based causal inference for estimating joint effects of time-varying continuous treatments by effectively controlling for stable traits. After explaining the assumed data-generating process and providing formal definitions of stable trait factors, within-person variability scores, and joint effects of time-varying treatments at the within-person level, we introduce the proposed method, which consists of a two-step analysis. Within-person variability scores for each person, which are disaggregated from stable traits of that person, are first calculated using weights based on a best linear correlation preserving predictor through structural equation modeling (SEM). Causal parameters are then estimated via a potential outcome approach, either marginal structural models (MSMs) or structural nested mean models (SNMMs), using calculated within-person variability scores. Unlike the approach that relies entirely on SEM, the present method does not assume linearity for observed time-varying confounders at the within-person level. We emphasize the use of SNMMs with G-estimation because of its property of being doubly robust to model misspecifications in how observed time-varying confounders are functionally related with treatments/predictors and outcomes at the within-person level. Through simulation, we show that the proposed method can recover causal parameters well and that causal estimates might be severely biased if one does not properly account for stable traits. An empirical application using data regarding sleep habits and mental health status from the Tokyo Teen Cohort study is also provided.
We study the off-policy evaluation (OPE) problem in reinforcement learning with linear function approximation, which aims to estimate the value function of a target policy based on the offline data collected by a behavior policy. We propose to incorporate the variance information of the value function to improve the sample efficiency of OPE. More specifically, for time-inhomogeneous episodic linear Markov decision processes (MDPs), we propose an algorithm, VA-OPE, which uses the estimated variance of the value function to reweight the Bellman residual in Fitted Q-Iteration. We show that our algorithm achieves a tighter error bound than the best-known result. We also provide a fine-grained characterization of the distribution shift between the behavior policy and the target policy. Extensive numerical experiments corroborate our theory.
The global financial crisis of 2007-2009 highlighted the crucial role systemic risk plays in ensuring stability of financial markets. Accurate assessment of systemic risk would enable regulators to introduce suitable policies to mitigate the risk as well as allow individual institutions to monitor their vulnerability to market movements. One popular measure of systemic risk is the conditional value-at-risk (CoVaR), proposed in Adrian and Brunnermeier (2011). We develop a methodology to estimate CoVaR semi-parametrically within the framework of multivariate extreme value theory. According to its definition, CoVaR can be viewed as a high quantile of the conditional distribution of one institution's (or the financial system) potential loss, where the conditioning event corresponds to having large losses in the financial system (or the given financial institution). We relate this conditional distribution to the tail dependence function between the system and the institution, then use parametric modelling of the tail dependence function to address data sparsity in the joint tail regions. We prove consistency of the proposed estimator, and illustrate its performance via simulation studies and a real data example.
This paper addresses the problem of estimating and tracking human body keypoints in complex, multi-person video. We propose an extremely lightweight yet highly effective approach that builds upon the latest advancements in human detection and video understanding. Our method operates in two-stages: keypoint estimation in frames or short clips, followed by lightweight tracking to generate keypoint predictions linked over the entire video. For frame-level pose estimation we experiment with Mask R-CNN, as well as our own proposed 3D extension of this model, which leverages temporal information over small clips to generate more robust frame predictions. We conduct extensive ablative experiments on the newly released multi-person video pose estimation benchmark, PoseTrack, to validate various design choices of our model. Our approach achieves an accuracy of 55.2% on the validation and 51.8% on the test set using the Multi-Object Tracking Accuracy (MOTA) metric, and achieves state of the art performance on the ICCV 2017 PoseTrack keypoint tracking challenge.