亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Bayesian models based on the Dirichlet process and other stick-breaking priors have been proposed as core ingredients for clustering, topic modeling, and other unsupervised learning tasks. Prior specification is, however, relatively difficult for such models, given that their flexibility implies that the consequences of prior choices are often relatively opaque. Moreover, these choices can have a substantial effect on posterior inferences. Thus, considerations of robustness need to go hand in hand with nonparametric modeling. In the current paper, we tackle this challenge by exploiting the fact that variational Bayesian methods, in addition to having computational advantages in fitting complex nonparametric models, also yield sensitivities with respect to parametric and nonparametric aspects of Bayesian models. In particular, we demonstrate how to assess the sensitivity of conclusions to the choice of concentration parameter and stick-breaking distribution for inferences under Dirichlet process mixtures and related mixture models. We provide both theoretical and empirical support for our variational approach to Bayesian sensitivity analysis.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 極大值 · 泛函 · AIM · 規范化的 ·
2021 年 12 月 27 日

The modeling of dependence between maxima is an important subject in several applications in risk analysis. To this aim, the extreme value copula function, characterised via the madogram, can be used as a margin-free description of the dependence structure. From a practical point of view, the family of extreme value distributions is very rich and arise naturally as the limiting distribution of properly normalised component-wise maxima. In this paper, we investigate the nonparametric estimation of the madogram where data are completely missing at random. We provide the functional central limit theorem for the considered multivariate madrogram correctly normalized, towards a tight Gaussian process for which the covariance function depends on the probabilities of missing. Explicit formula for the asymptotic variance is also given. Our results are illustrated in a finite sample setting with a simulation study.

We investigate the local spectral statistics of the loss surface Hessians of artificial neural networks, where we discover excellent agreement with Gaussian Orthogonal Ensemble statistics across several network architectures and datasets. These results shed new light on the applicability of Random Matrix Theory to modelling neural networks and suggest a previously unrecognised role for it in the study of loss surfaces in deep learning. Inspired by these observations, we propose a novel model for the true loss surfaces of neural networks, consistent with our observations, which allows for Hessian spectral densities with rank degeneracy and outliers, extensively observed in practice, and predicts a growing independence of loss gradients as a function of distance in weight-space. We further investigate the importance of the true loss surface in neural networks and find, in contrast to previous work, that the exponential hardness of locating the global minimum has practical consequences for achieving state of the art performance.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

Evaluating the quality of learned representations without relying on a downstream task remains one of the challenges in representation learning. In this work, we present Geometric Component Analysis (GeomCA) algorithm that evaluates representation spaces based on their geometric and topological properties. GeomCA can be applied to representations of any dimension, independently of the model that generated them. We demonstrate its applicability by analyzing representations obtained from a variety of scenarios, such as contrastive learning models, generative models and supervised learning models.

The posterior over Bayesian neural network (BNN) parameters is extremely high-dimensional and non-convex. For computational reasons, researchers approximate this posterior using inexpensive mini-batch methods such as mean-field variational inference or stochastic-gradient Markov chain Monte Carlo (SGMCMC). To investigate foundational questions in Bayesian deep learning, we instead use full-batch Hamiltonian Monte Carlo (HMC) on modern architectures. We show that (1) BNNs can achieve significant performance gains over standard training and deep ensembles; (2) a single long HMC chain can provide a comparable representation of the posterior to multiple shorter chains; (3) in contrast to recent studies, we find posterior tempering is not needed for near-optimal performance, with little evidence for a "cold posterior" effect, which we show is largely an artifact of data augmentation; (4) BMA performance is robust to the choice of prior scale, and relatively similar for diagonal Gaussian, mixture of Gaussian, and logistic priors; (5) Bayesian neural networks show surprisingly poor generalization under domain shift; (6) while cheaper alternatives such as deep ensembles and SGMCMC methods can provide good generalization, they provide distinct predictive distributions from HMC. Notably, deep ensemble predictive distributions are similarly close to HMC as standard SGLD, and closer than standard variational inference.

While progress has been made on the visual question answering leaderboards, models often utilize spurious correlations and priors in datasets under the i.i.d. setting. As such, evaluation on out-of-distribution (OOD) test samples has emerged as a proxy for generalization. In this paper, we present \textit{MUTANT}, a training paradigm that exposes the model to perceptually similar, yet semantically distinct \textit{mutations} of the input, to improve OOD generalization, such as the VQA-CP challenge. Under this paradigm, models utilize a consistency-constrained training objective to understand the effect of semantic changes in input (question-image pair) on the output (answer). Unlike existing methods on VQA-CP, \textit{MUTANT} does not rely on the knowledge about the nature of train and test answer distributions. \textit{MUTANT} establishes a new state-of-the-art accuracy on VQA-CP with a $10.57\%$ improvement. Our work opens up avenues for the use of semantic input mutations for OOD generalization in question answering.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.

Topic models have been widely explored as probabilistic generative models of documents. Traditional inference methods have sought closed-form derivations for updating the models, however as the expressiveness of these models grows, so does the difficulty of performing fast and accurate inference over their parameters. This paper presents alternative neural approaches to topic modelling by providing parameterisable distributions over topics which permit training by backpropagation in the framework of neural variational inference. In addition, with the help of a stick-breaking construction, we propose a recurrent network that is able to discover a notionally unbounded number of topics, analogous to Bayesian non-parametric topic models. Experimental results on the MXM Song Lyrics, 20NewsGroups and Reuters News datasets demonstrate the effectiveness and efficiency of these neural topic models.

Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalising to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop an Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by product. The results and their inferential implications are showcased on synthetic and real data.

北京阿比特科技有限公司