Secure aggregation of high-dimensional vectors is a fundamental primitive in federated statistics and learning. A two-server system such as PRIO allows for scalable aggregation of secret-shared vectors. Adversarial clients might try to manipulate the aggregate, so it is important to ensure that each (secret-shared) contribution is well-formed. In this work, we focus on the important and well-studied goal of ensuring that each contribution vector has bounded Euclidean norm. Existing protocols for ensuring bounded-norm contributions either incur a large communication overhead, or only allow for approximate verification of the norm bound. We propose Private Inexpensive Norm Enforcement (PINE): a new protocol that allows exact norm verification with little communication overhead. For high-dimensional vectors, our approach has a communication overhead of a few percent, compared to the 16-32x overhead of previous approaches.
Learning precise representations of users and items to fit observed interaction data is the fundamental task of collaborative filtering. Existing studies usually infer entangled representations to fit such interaction data, neglecting to model the diverse matching relationships between users and items behind their interactions, leading to limited performance and weak interpretability. To address this problem, we propose a Dual Disentangled Variational AutoEncoder (DualVAE) for collaborative recommendation, which combines disentangled representation learning with variational inference to facilitate the generation of implicit interaction data. Specifically, we first implement the disentangling concept by unifying an attention-aware dual disentanglement and disentangled variational autoencoder to infer the disentangled latent representations of users and items. Further, to encourage the correspondence and independence of disentangled representations of users and items, we design a neighborhood-enhanced representation constraint with a customized contrastive mechanism to improve the representation quality. Extensive experiments on three real-world benchmarks show that our proposed model significantly outperforms several recent state-of-the-art baselines. Further empirical experimental results also illustrate the interpretability of the disentangled representations learned by DualVAE.
Causal effect estimation from observational data is a central problem in causal inference. Methods based on potential outcomes framework solve this problem by exploiting inductive biases and heuristics from causal inference. Each of these methods addresses a specific aspect of causal effect estimation, such as controlling propensity score, enforcing randomization, etc., by designing neural network (NN) architectures and regularizers. In this paper, we propose an adaptive method called Neurosymbolic Causal Effect Estimator (NESTER), a generalized method for causal effect estimation. NESTER integrates the ideas used in existing methods based on multi-head NNs for causal effect estimation into one framework. We design a Domain Specific Language (DSL) tailored for causal effect estimation based on causal inductive biases used in literature. We conduct a theoretical analysis to investigate NESTER's efficacy in estimating causal effects. Our comprehensive empirical results show that NESTER performs better than state-of-the-art methods on benchmark datasets.
The multilevel heuristic is the dominant strategy for high-quality sequential and parallel graph partitioning. Partition refinement is a key step of multilevel graph partitioning. In this work, we present Jet, a new parallel algorithm for partition refinement specifically designed for Graphics Processing Units (GPUs). We combine Jet with GPU-aware coarsening to develop a $k$-way graph partitioner, the Jet partitioner. The new partitioner achieves superior quality compared to state-of-the-art shared memory partitioners on a large collection of test graphs.
Image segmentation aims to partition an image according to the objects in the scene and is a fundamental step in analysing very high spatial-resolution (VHR) remote sensing imagery. Current methods struggle to effectively consider land objects with diverse shapes and sizes. Additionally, the determination of segmentation scale parameters frequently adheres to a static and empirical doctrine, posing limitations on the segmentation of large-scale remote sensing images and yielding algorithms with limited interpretability. To address the above challenges, we propose a deep-learning-based region merging method dubbed DeepMerge to handle the segmentation of complete objects in large VHR images by integrating deep learning and region adjacency graph (RAG). This is the first method to use deep learning to learn the similarity and merge similar adjacent super-pixels in RAG. We propose a modified binary tree sampling method to generate shift-scale data, serving as inputs for transformer-based deep learning networks, a shift-scale attention with 3-Dimension relative position embedding to learn features across scales, and an embedding to fuse learned features with hand-crafted features. DeepMerge can achieve high segmentation accuracy in a supervised manner from large-scale remotely sensed images and provides an interpretable optimal scale parameter, which is validated using a remote sensing image of 0.55 m resolution covering an area of 5,660 km^2. The experimental results show that DeepMerge achieves the highest F value (0.9550) and the lowest total error TE (0.0895), correctly segmenting objects of different sizes and outperforming all competing segmentation methods.
Recent Newton-type federated learning algorithms have demonstrated linear convergence with respect to the communication rounds. However, communicating Hessian matrices is often unfeasible due to their quadratic communication complexity. In this paper, we introduce a novel approach to tackle this issue while still achieving fast convergence rates. Our proposed method, named as Federated Newton Sketch methods (FedNS), approximates the centralized Newton's method by communicating the sketched square-root Hessian instead of the exact Hessian. To enhance communication efficiency, we reduce the sketch size to match the effective dimension of the Hessian matrix. We provide convergence analysis based on statistical learning for the federated Newton sketch approaches. Specifically, our approaches reach super-linear convergence rates w.r.t. the communication rounds for the first time. We validate the effectiveness of our algorithms through various experiments, which coincide with our theoretical findings.
Semi-supervised learning on class-imbalanced data, although a realistic problem, has been under studied. While existing semi-supervised learning (SSL) methods are known to perform poorly on minority classes, we find that they still generate high precision pseudo-labels on minority classes. By exploiting this property, in this work, we propose Class-Rebalancing Self-Training (CReST), a simple yet effective framework to improve existing SSL methods on class-imbalanced data. CReST iteratively retrains a baseline SSL model with a labeled set expanded by adding pseudo-labeled samples from an unlabeled set, where pseudo-labeled samples from minority classes are selected more frequently according to an estimated class distribution. We also propose a progressive distribution alignment to adaptively adjust the rebalancing strength dubbed CReST+. We show that CReST and CReST+ improve state-of-the-art SSL algorithms on various class-imbalanced datasets and consistently outperform other popular rebalancing methods.
Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.
Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.
Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.
Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.