Point clouds are characterized by irregularity and unstructuredness, which pose challenges in efficient data exploitation and discriminative feature extraction. In this paper, we present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology as a completely regular 2D point geometry image (PGI) structure, in which coordinates of spatial points are captured in colors of image pixels. \mr{Intuitively, Flattening-Net implicitly approximates a locally smooth 3D-to-2D surface flattening process while effectively preserving neighborhood consistency.} \mr{As a generic representation modality, PGI inherently encodes the intrinsic property of the underlying manifold structure and facilitates surface-style point feature aggregation.} To demonstrate its potential, we construct a unified learning framework directly operating on PGIs to achieve \mr{diverse types of high-level and low-level} downstream applications driven by specific task networks, including classification, segmentation, reconstruction, and upsampling. Extensive experiments demonstrate that our methods perform favorably against the current state-of-the-art competitors. We will make the code and data publicly available at //github.com/keeganhk/Flattening-Net.
Microscopy images often suffer from high levels of noise, which can hinder further analysis and interpretation. Content-aware image restoration (CARE) methods have been proposed to address this issue, but they often require large amounts of training data and suffer from over-fitting. To overcome these challenges, we propose a novel framework for few-shot microscopy image denoising. Our approach combines a generative adversarial network (GAN) trained via contrastive learning (CL) with two structure preserving loss terms (Structural Similarity Index and Total Variation loss) to further improve the quality of the denoised images using little data. We demonstrate the effectiveness of our method on three well-known microscopy imaging datasets, and show that we can drastically reduce the amount of training data while retaining the quality of the denoising, thus alleviating the burden of acquiring paired data and enabling few-shot learning. The proposed framework can be easily extended to other image restoration tasks and has the potential to significantly advance the field of microscopy image analysis.
We propose a novel method to reconstruct the 3D shapes of transparent objects using hand-held captured images under natural light conditions. It combines the advantage of explicit mesh and multi-layer perceptron (MLP) network, a hybrid representation, to simplify the capture setting used in recent contributions. After obtaining an initial shape through the multi-view silhouettes, we introduce surface-based local MLPs to encode the vertex displacement field (VDF) for the reconstruction of surface details. The design of local MLPs allows to represent the VDF in a piece-wise manner using two layer MLP networks, which is beneficial to the optimization algorithm. Defining local MLPs on the surface instead of the volume also reduces the searching space. Such a hybrid representation enables us to relax the ray-pixel correspondences that represent the light path constraint to our designed ray-cell correspondences, which significantly simplifies the implementation of single-image based environment matting algorithm. We evaluate our representation and reconstruction algorithm on several transparent objects with ground truth models. Our experiments show that our method can produce high-quality reconstruction results superior to state-of-the-art methods using a simplified data acquisition setup.
To apply optical flow in practice, it is often necessary to resize the input to smaller dimensions in order to reduce computational costs. However, downsizing inputs makes the estimation more challenging because objects and motion ranges become smaller. Even though recent approaches have demonstrated high-quality flow estimation, they tend to fail to accurately model small objects and precise boundaries when the input resolution is lowered, restricting their applicability to high-resolution inputs. In this paper, we introduce AnyFlow, a robust network that estimates accurate flow from images of various resolutions. By representing optical flow as a continuous coordinate-based representation, AnyFlow generates outputs at arbitrary scales from low-resolution inputs, demonstrating superior performance over prior works in capturing tiny objects with detail preservation on a wide range of scenes. We establish a new state-of-the-art performance of cross-dataset generalization on the KITTI dataset, while achieving comparable accuracy on the online benchmarks to other SOTA methods.
In point cloud analysis, point-based methods have rapidly developed in recent years. These methods have recently focused on concise MLP structures, such as PointNeXt, which have demonstrated competitiveness with Convolutional and Transformer structures. However, standard MLPs are limited in their ability to extract local features effectively. To address this limitation, we propose a Vector-oriented Point Set Abstraction that can aggregate neighboring features through higher-dimensional vectors. To facilitate network optimization, we construct a transformation from scalar to vector using independent angles based on 3D vector rotations. Finally, we develop a PointVector model that follows the structure of PointNeXt. Our experimental results demonstrate that PointVector achieves state-of-the-art performance $\textbf{72.3\% mIOU}$ on the S3DIS Area 5 and $\textbf{78.4\% mIOU}$ on the S3DIS (6-fold cross-validation) with only $\textbf{58\%}$ model parameters of PointNeXt. We hope our work will help the exploration of concise and effective feature representations. The code will be released soon.
This paper investigates an open research task of reconstructing and generating 3D point clouds. Most existing works of 3D generative models directly take the Gaussian prior as input for the decoder to generate 3D point clouds, which fail to learn disentangled latent codes, leading noisy interpolated results. Most of the GAN-based models fail to discriminate the local geometries, resulting in the point clouds generated not evenly distributed at the object surface, hence degrading the point cloud generation quality. Moreover, prevailing methods adopt computation-intensive frameworks, such as flow-based models and Markov chains, which take plenty of time and resources in the training phase. To resolve these limitations, this paper proposes a unified style-aware network architecture combining both point-wise distance loss and adversarial loss, StarNet which is able to reconstruct and generate high-fidelity and even 3D point clouds using a mapping network that can effectively disentangle the Gaussian prior from input's high-level attributes in the mapped latent space to generate realistic interpolated objects. Experimental results demonstrate that our framework achieves comparable state-of-the-art performance on various metrics in the point cloud reconstruction and generation tasks, but is more lightweight in model size, requires much fewer parameters and less time for model training.
In recent years, there has been a significant increase in focus on the interpolation task of computer vision. Despite the tremendous advancement of video interpolation, point cloud interpolation remains insufficiently explored. Meanwhile, the existence of numerous nonlinear large motions in real-world scenarios makes the point cloud interpolation task more challenging. In light of these issues, we present NeuralPCI: an end-to-end 4D spatio-temporal Neural field for 3D Point Cloud Interpolation, which implicitly integrates multi-frame information to handle nonlinear large motions for both indoor and outdoor scenarios. Furthermore, we construct a new multi-frame point cloud interpolation dataset called NL-Drive for large nonlinear motions in autonomous driving scenes to better demonstrate the superiority of our method. Ultimately, NeuralPCI achieves state-of-the-art performance on both DHB (Dynamic Human Bodies) and NL-Drive datasets. Beyond the interpolation task, our method can be naturally extended to point cloud extrapolation, morphing, and auto-labeling, which indicates its substantial potential in other domains. Codes are available at //github.com/ispc-lab/NeuralPCI.
In this work, we consider the problem of estimating the 3D position of multiple humans in a scene as well as their body shape and articulation from a single RGB video recorded with a static camera. In contrast to expensive marker-based or multi-view systems, our lightweight setup is ideal for private users as it enables an affordable 3D motion capture that is easy to install and does not require expert knowledge. To deal with this challenging setting, we leverage recent advances in computer vision using large-scale pre-trained models for a variety of modalities, including 2D body joints, joint angles, normalized disparity maps, and human segmentation masks. Thus, we introduce the first non-linear optimization-based approach that jointly solves for the absolute 3D position of each human, their articulated pose, their individual shapes as well as the scale of the scene. In particular, we estimate the scene depth and person unique scale from normalized disparity predictions using the 2D body joints and joint angles. Given the per-frame scene depth, we reconstruct a point-cloud of the static scene in 3D space. Finally, given the per-frame 3D estimates of the humans and scene point-cloud, we perform a space-time coherent optimization over the video to ensure temporal, spatial and physical plausibility. We evaluate our method on established multi-person 3D human pose benchmarks where we consistently outperform previous methods and we qualitatively demonstrate that our method is robust to in-the-wild conditions including challenging scenes with people of different sizes.
We introduce Structured 3D Features, a model based on a novel implicit 3D representation that pools pixel-aligned image features onto dense 3D points sampled from a parametric, statistical human mesh surface. The 3D points have associated semantics and can move freely in 3D space. This allows for optimal coverage of the person of interest, beyond just the body shape, which in turn, additionally helps modeling accessories, hair, and loose clothing. Owing to this, we present a complete 3D transformer-based attention framework which, given a single image of a person in an unconstrained pose, generates an animatable 3D reconstruction with albedo and illumination decomposition, as a result of a single end-to-end model, trained semi-supervised, and with no additional postprocessing. We show that our S3F model surpasses the previous state-of-the-art on various tasks, including monocular 3D reconstruction, as well as albedo and shading estimation. Moreover, we show that the proposed methodology allows novel view synthesis, relighting, and re-posing the reconstruction, and can naturally be extended to handle multiple input images (e.g. different views of a person, or the same view, in different poses, in video). Finally, we demonstrate the editing capabilities of our model for 3D virtual try-on applications.
Event cameras sense the intensity changes asynchronously and produce event streams with high dynamic range and low latency. This has inspired research endeavors utilizing events to guide the challenging video superresolution (VSR) task. In this paper, we make the first attempt to address a novel problem of achieving VSR at random scales by taking advantages of the high temporal resolution property of events. This is hampered by the difficulties of representing the spatial-temporal information of events when guiding VSR. To this end, we propose a novel framework that incorporates the spatial-temporal interpolation of events to VSR in a unified framework. Our key idea is to learn implicit neural representations from queried spatial-temporal coordinates and features from both RGB frames and events. Our method contains three parts. Specifically, the Spatial-Temporal Fusion (STF) module first learns the 3D features from events and RGB frames. Then, the Temporal Filter (TF) module unlocks more explicit motion information from the events near the queried timestamp and generates the 2D features. Lastly, the SpatialTemporal Implicit Representation (STIR) module recovers the SR frame in arbitrary resolutions from the outputs of these two modules. In addition, we collect a real-world dataset with spatially aligned events and RGB frames. Extensive experiments show that our method significantly surpasses the prior-arts and achieves VSR with random scales, e.g., 6.5. Code and dataset are available at https: //vlis2022.github.io/cvpr23/egvsr.
Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.