亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies a multi-intelligent-reflecting-surface-(IRS)-enabled integrated sensing and communications (ISAC) system, in which multiple IRSs are installed to help the base station (BS) provide ISAC services at separate line-of-sight (LoS) blocked areas. We focus on the scenario with semi-passive uniform linear array (ULA) IRSsfor sensing, in which each IRS is integrated with dedicated sensors for processing echo signals, and each IRS simultaneously serves one sensing target and one communication user (CU) in its coverage area. In particular, we suppose that the BS sends combined information and dedicated sensing signals for ISAC, and we consider two cases with point and extended targets, in which each IRS aims to estimate the direction-of-arrival (DoA) of the corresponding target and the complete target response matrix, respectively. Under this setup, we first derive the closed-form Cram{\'e}r-Rao bounds (CRBs) for parameters estimation under the two target models. For the point target case, the CRB for AoA estimation is shown to be inversely proportional to the cubic of the number of sensors at each IRS, while for the extended target case, the CRB for target response matrix estimation is proportional to the number of IRS sensors. Next, we consider two different types of CU receivers that can and cannot cancel the interference from dedicated sensing signals prior to information decoding. To achieve fair and optimized sensing performance, we minimize the maximum CRB at all IRSs for the two target cases, via jointly optimizing the transmit beamformers at the BS and the reflective beamformers at the multiple IRSs, subject to the minimum signal-to-interference-plus-noise ratio (SINR) constraints at individual CUs, the maximum transmit power constraint at the BS, and the unit-modulus constraints at the multiple IRSs.

相關內容

Version incompatibility issues are rampant when reusing or reproducing deep learning models and applications. Existing techniques are limited to library dependency specifications declared in PyPI. Therefore, these techniques cannot detect version issues due to undocumented version constraints or issues involving hardware drivers or OS. To address this challenge, we propose to leverage the abundant discussions of DL version issues from Stack Overflow to facilitate version incompatibility detection. We reformulate the problem of knowledge extraction as a Question-Answering (QA) problem and use a pre-trained QA model to extract version compatibility knowledge from online discussions. The extracted knowledge is further consolidated into a weighted knowledge graph to detect potential version incompatibilities when reusing a DL project. Our evaluation results show that (1) our approach can accurately extract version knowledge with 84% accuracy, and (2) our approach can accurately identify 65% of known version issues in 10 popular DL projects with a high precision (92%), while two state-of-the-art approaches can only detect 29% and 6% of these issues with 33% and 17% precision respectively.

Recommendation strategies are typically evaluated by using previously logged data, employing off-policy evaluation methods to estimate their expected performance. However, for strategies that present users with slates of multiple items, the resulting combinatorial action space renders many of these methods impractical. Prior work has developed estimators that leverage the structure in slates to estimate the expected off-policy performance, but the estimation of the entire performance distribution remains elusive. Estimating the complete distribution allows for a more comprehensive evaluation of recommendation strategies, particularly along the axes of risk and fairness that employ metrics computable from the distribution. In this paper, we propose an estimator for the complete off-policy performance distribution for slates and establish conditions under which the estimator is unbiased and consistent. This builds upon prior work on off-policy evaluation for slates and off-policy distribution estimation in reinforcement learning. We validate the efficacy of our method empirically on synthetic data as well as on a slate recommendation simulator constructed from real-world data (MovieLens-20M). Our results show a significant reduction in estimation variance and improved sample efficiency over prior work across a range of slate structures.

Symbolic knowledge graphs (KGs) play a pivotal role in knowledge-centric applications such as search, question answering and recommendation. As contemporary language models (LMs) trained on extensive textual data have gained prominence, researchers have extensively explored whether the parametric knowledge within these models can match up to that present in knowledge graphs. Various methodologies have indicated that enhancing the size of the model or the volume of training data enhances its capacity to retrieve symbolic knowledge, often with minimal or no human supervision. Despite these advancements, there is a void in comprehensively evaluating whether LMs can encompass the intricate topological and semantic attributes of KGs, attributes crucial for reasoning processes. In this work, we provide an exhaustive evaluation of language models of varying sizes and capabilities. We construct nine qualitative benchmarks that encompass a spectrum of attributes including symmetry, asymmetry, hierarchy, bidirectionality, compositionality, paths, entity-centricity, bias and ambiguity. Additionally, we propose novel evaluation metrics tailored for each of these attributes. Our extensive evaluation of various LMs shows that while these models exhibit considerable potential in recalling factual information, their ability to capture intricate topological and semantic traits of KGs remains significantly constrained. We note that our proposed evaluation metrics are more reliable in evaluating these abilities than the existing metrics. Lastly, some of our benchmarks challenge the common notion that larger LMs (e.g., GPT-4) universally outshine their smaller counterparts (e.g., BERT).

This paper presents a novel visual-language model called DFER-CLIP, which is based on the CLIP model and designed for in-the-wild Dynamic Facial Expression Recognition (DFER). Specifically, the proposed DFER-CLIP consists of a visual part and a textual part. For the visual part, based on the CLIP image encoder, a temporal model consisting of several Transformer encoders is introduced for extracting temporal facial expression features, and the final feature embedding is obtained as a learnable "class" token. For the textual part, we use as inputs textual descriptions of the facial behaviour that is related to the classes (facial expressions) that we are interested in recognising -- those descriptions are generated using large language models, like ChatGPT. This, in contrast to works that use only the class names and more accurately captures the relationship between them. Alongside the textual description, we introduce a learnable token which helps the model learn relevant context information for each expression during training. Extensive experiments demonstrate the effectiveness of the proposed method and show that our DFER-CLIP also achieves state-of-the-art results compared with the current supervised DFER methods on the DFEW, FERV39k, and MAFW benchmarks. Code is publicly available at //github.com/zengqunzhao/DFER-CLIP.

This paper introduces a novel data-driven motion in-betweening system to reach target poses of characters by making use of phases variables learned by a Periodic Autoencoder. Our approach utilizes a mixture-of-experts neural network model, in which the phases cluster movements in both space and time with different expert weights. Each generated set of weights then produces a sequence of poses in an autoregressive manner between the current and target state of the character. In addition, to satisfy poses which are manually modified by the animators or where certain end effectors serve as constraints to be reached by the animation, a learned bi-directional control scheme is implemented to satisfy such constraints. The results demonstrate that using phases for motion in-betweening tasks sharpen the interpolated movements, and furthermore stabilizes the learning process. Moreover, using phases for motion in-betweening tasks can also synthesize more challenging movements beyond locomotion behaviors. Additionally, style control is enabled between given target keyframes. Our proposed framework can compete with popular state-of-the-art methods for motion in-betweening in terms of motion quality and generalization, especially in the existence of long transition durations. Our framework contributes to faster prototyping workflows for creating animated character sequences, which is of enormous interest for the game and film industry.

This paper presents ER-NeRF, a novel conditional Neural Radiance Fields (NeRF) based architecture for talking portrait synthesis that can concurrently achieve fast convergence, real-time rendering, and state-of-the-art performance with small model size. Our idea is to explicitly exploit the unequal contribution of spatial regions to guide talking portrait modeling. Specifically, to improve the accuracy of dynamic head reconstruction, a compact and expressive NeRF-based Tri-Plane Hash Representation is introduced by pruning empty spatial regions with three planar hash encoders. For speech audio, we propose a Region Attention Module to generate region-aware condition feature via an attention mechanism. Different from existing methods that utilize an MLP-based encoder to learn the cross-modal relation implicitly, the attention mechanism builds an explicit connection between audio features and spatial regions to capture the priors of local motions. Moreover, a direct and fast Adaptive Pose Encoding is introduced to optimize the head-torso separation problem by mapping the complex transformation of the head pose into spatial coordinates. Extensive experiments demonstrate that our method renders better high-fidelity and audio-lips synchronized talking portrait videos, with realistic details and high efficiency compared to previous methods.

Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.

We present MMKG, a collection of three knowledge graphs that contain both numerical features and (links to) images for all entities as well as entity alignments between pairs of KGs. Therefore, multi-relational link prediction and entity matching communities can benefit from this resource. We believe this data set has the potential to facilitate the development of novel multi-modal learning approaches for knowledge graphs.We validate the utility ofMMKG in the sameAs link prediction task with an extensive set of experiments. These experiments show that the task at hand benefits from learning of multiple feature types.

This paper describes a general framework for learning Higher-Order Network Embeddings (HONE) from graph data based on network motifs. The HONE framework is highly expressive and flexible with many interchangeable components. The experimental results demonstrate the effectiveness of learning higher-order network representations. In all cases, HONE outperforms recent embedding methods that are unable to capture higher-order structures with a mean relative gain in AUC of $19\%$ (and up to $75\%$ gain) across a wide variety of networks and embedding methods.

Many recent state-of-the-art recommender systems such as D-ATT, TransNet and DeepCoNN exploit reviews for representation learning. This paper proposes a new neural architecture for recommendation with reviews. Our model operates on a multi-hierarchical paradigm and is based on the intuition that not all reviews are created equal, i.e., only a select few are important. The importance, however, should be dynamically inferred depending on the current target. To this end, we propose a review-by-review pointer-based learning scheme that extracts important reviews, subsequently matching them in a word-by-word fashion. This enables not only the most informative reviews to be utilized for prediction but also a deeper word-level interaction. Our pointer-based method operates with a novel gumbel-softmax based pointer mechanism that enables the incorporation of discrete vectors within differentiable neural architectures. Our pointer mechanism is co-attentive in nature, learning pointers which are co-dependent on user-item relationships. Finally, we propose a multi-pointer learning scheme that learns to combine multiple views of interactions between user and item. Overall, we demonstrate the effectiveness of our proposed model via extensive experiments on \textbf{24} benchmark datasets from Amazon and Yelp. Empirical results show that our approach significantly outperforms existing state-of-the-art, with up to 19% and 71% relative improvement when compared to TransNet and DeepCoNN respectively. We study the behavior of our multi-pointer learning mechanism, shedding light on evidence aggregation patterns in review-based recommender systems.

北京阿比特科技有限公司