Synthetic control methods have been widely used for evaluating policy effects in comparative case studies. However, most existing synthetic control methods implicitly rule out interference effects on the untreated units, and their validity may be jeopardized in the presence of interference. In this paper, we propose a novel synthetic control method, which admits interference but does not require modeling the interference structure. Identification of the effects is achieved under the assumption that the number of interfered units is no larger than half of the total number of units minus the dimension of confounding factors. We propose consistent and asymptotically normal estimation and establish statistical inference for the direct and interference effects averaged over post-intervention periods. We evaluate the performance of our method and compare it to competing methods via numerical experiments. A real data analysis, evaluating the effects of the announcement of relocating the US embassy to Jerusalem on the number of Middle Eastern conflicts, provides empirical evidence that the announcement not only increases the number of conflicts in Israel-Palestine but also has interference effects on several other Middle Eastern countries.
Recent surge in Large Language Model (LLM) availability has opened exciting avenues for research. However, efficiently interacting with these models presents a significant hurdle since LLMs often reside on proprietary or self-hosted API endpoints, each requiring custom code for interaction. Conducting comparative studies between different models can therefore be time-consuming and necessitate significant engineering effort, hindering research efficiency and reproducibility. To address these challenges, we present prompto, an open source Python library which facilitates asynchronous querying of LLM endpoints enabling researchers to interact with multiple LLMs concurrently, while maximising efficiency and utilising individual rate limits. Our library empowers researchers and developers to interact with LLMs more effectively and allowing faster experimentation, data generation and evaluation. prompto is released with an introductory video (//youtu.be/lWN9hXBOLyQ) under MIT License and is available via GitHub (//github.com/alan-turing-institute/prompto).
This study presents a novel representation learning model tailored for dynamic networks, which describes the continuously evolving relationships among individuals within a population. The problem is encapsulated in the dimension reduction topic of functional data analysis. With dynamic networks represented as matrix-valued functions, our objective is to map this functional data into a set of vector-valued functions in a lower-dimensional learning space. This space, defined as a metric functional space, allows for the calculation of norms and inner products. By constructing this learning space, we address (i) attribute learning, (ii) community detection, and (iii) link prediction and recovery of individual nodes in the dynamic network. Our model also accommodates asymmetric low-dimensional representations, enabling the separate study of nodes' regulatory and receiving roles. Crucially, the learning method accounts for the time-dependency of networks, ensuring that representations are continuous over time. The functional learning space we define naturally spans the time frame of the dynamic networks, facilitating both the inference of network links at specific time points and the reconstruction of the entire network structure without direct observation. We validated our approach through simulation studies and real-world applications. In simulations, we compared our methods link prediction performance to existing approaches under various data corruption scenarios. For real-world applications, we examined a dynamic social network replicated across six ant populations, demonstrating that our low-dimensional learning space effectively captures interactions, roles of individual ants, and the social evolution of the network. Our findings align with existing knowledge of ant colony behavior.
A discrete spatial lattice can be cast as a network structure over which spatially-correlated outcomes are observed. A second network structure may also capture similarities among measured features, when such information is available. Incorporating the network structures when analyzing such doubly-structured data can improve predictive power, and lead to better identification of important features in the data-generating process. Motivated by applications in spatial disease mapping, we develop a new doubly regularized regression framework to incorporate these network structures for analyzing high-dimensional datasets. Our estimators can be easily implemented with standard convex optimization algorithms. In addition, we describe a procedure to obtain asymptotically valid confidence intervals and hypothesis tests for our model parameters. We show empirically that our framework provides improved predictive accuracy and inferential power compared to existing high-dimensional spatial methods. These advantages hold given fully accurate network information, and also with networks which are partially misspecified or uninformative. The application of the proposed method to modeling COVID-19 mortality data suggests that it can improve prediction of deaths beyond standard spatial models, and that it selects relevant covariates more often.
For several types of information relations, the induced rough sets system RS does not form a lattice but only a partially ordered set. However, by studying its Dedekind-MacNeille completion DM(RS), one may reveal new important properties of rough set structures. Building upon D. Umadevi's work on describing joins and meets in DM(RS), we previously investigated pseudo-Kleene algebras defined on DM(RS) for reflexive relations. This paper delves deeper into the order-theoretic properties of DM(RS) in the context of reflexive relations. We describe the completely join-irreducible elements of DM(RS) and characterize when DM(RS) is a spatial completely distributive lattice. We show that even in the case of a non-transitive reflexive relation, DM(RS) can form a Nelson algebra, a property generally associated with quasiorders. We introduce a novel concept, the core of a relational neighborhood, and use it to provide a necessary and sufficient condition for DM(RS) to determine a Nelson algebra.
Randomized iterative algorithms, such as the randomized Kaczmarz method, have gained considerable popularity due to their efficacy in solving matrix-vector and matrix-matrix regression problems. Our present work leverages the insights gained from studying such algorithms to develop regression methods for tensors, which are the natural setting for many application problems, e.g., image deblurring. In particular, we extend the randomized Kaczmarz method to solve a tensor system of the form $\mathbf{\mathcal{A}}\mathcal{X} = \mathcal{B}$, where $\mathcal{X}$ can be factorized as $\mathcal{X} = \mathcal{U}\mathcal{V}$, and all products are calculated using the t-product. We develop variants of the randomized factorized Kaczmarz method for matrices that approximately solve tensor systems in both the consistent and inconsistent regimes. We provide theoretical guarantees of the exponential convergence rate of our algorithms, accompanied by illustrative numerical simulations. Furthermore, we situate our method within a broader context by linking our novel approaches to earlier randomized Kaczmarz methods.
We present a novel, model-free, and data-driven methodology for controlling complex dynamical systems into previously unseen target states, including those with significantly different and complex dynamics. Leveraging a parameter-aware realization of next-generation reservoir computing, our approach accurately predicts system behavior in unobserved parameter regimes, enabling control over transitions to arbitrary target states. Crucially, this includes states with dynamics that differ fundamentally from known regimes, such as shifts from periodic to intermittent or chaotic behavior. The method's parameter-awareness facilitates non-stationary control, ensuring smooth transitions between states. By extending the applicability of machine learning-based control mechanisms to previously inaccessible target dynamics, this methodology opens the door to transformative new applications while maintaining exceptional efficiency. Our results highlight reservoir computing as a powerful alternative to traditional methods for dynamic system control.
We consider the bidimensional Stokes problem for incompressible fluids in stream function-vorticity. For this problem, the classical finite elements method of degree one converges only to order one-half for the L2 norm of the vorticity. We propose to use harmonic functions to approach the vorticity along the boundary. Discrete harmonics are functions that are used in practice to derive a new numerical method. We prove that we obtain with this numerical scheme an error of order one for the L2 norm of the vorticity.
Studying unified model averaging estimation for situations with complicated data structures, we propose a novel model averaging method based on cross-validation (MACV). MACV unifies a large class of new and existing model averaging estimators and covers a very general class of loss functions. Furthermore, to reduce the computational burden caused by the conventional leave-subject/one-out cross validation, we propose a SEcond-order-Approximated Leave-one/subject-out (SEAL) cross validation, which largely improves the computation efficiency. In the context of non-independent and non-identically distributed random variables, we establish the unified theory for analyzing the asymptotic behaviors of the proposed MACV and SEAL methods, where the number of candidate models is allowed to diverge with sample size. To demonstrate the breadth of the proposed methodology, we exemplify four optimal model averaging estimators under four important situations, i.e., longitudinal data with discrete responses, within-cluster correlation structure modeling, conditional prediction in spatial data, and quantile regression with a potential correlation structure. We conduct extensive simulation studies and analyze real-data examples to illustrate the advantages of the proposed methods.
The coherent systems are basic concepts in reliability theory and survival analysis. They contain as particular cases the popular series, parallel and $k$-ou-of-$n$ systems (order statistics). Many results have been obtained for them by assuming that the component lifetimes are independent. In many practical cases, this assumption is unrealistic. In this paper we study them by assuming a Time Transformed Exponential (TTE) model for the joint distribution of the component lifetimes. This model is equivalent to the frailty model which assumes that they are conditionally independent given a common risk parameter (which represents the common environment risk). Under this model, we obtain explicit expressions for the system reliability functions and comparison results for the main stochastic orders. The system residual lifetime (under different assumptions) is studied as well.
Two sequential estimators are proposed for the odds p/(1-p) and log odds log(p/(1-p)) respectively, using independent Bernoulli random variables with parameter p as inputs. The estimators are unbiased, and guarantee that the variance of the estimation error divided by the true value of the odds, or the variance of the estimation error of the log odds, are less than a target value for any p in (0,1). The estimators are close to optimal in the sense of Wolfowitz's bound.