The accuracy and fairness of perception systems in autonomous driving are crucial, particularly for vulnerable road users. Mainstream research has looked into improving the performance metrics for classification accuracy. However, the hidden traits of bias inheritance in the AI models, class imbalances and disparities in the datasets are often overlooked. In this context, our study examines the class imbalances for vulnerable road users by focusing on class distribution analysis, performance evaluation, and bias impact assessment. We identify the concern of imbalances in class representation, leading to potential biases in detection accuracy. Utilizing popular CNN models and Vision Transformers (ViTs) with the nuScenes dataset, our performance evaluation reveals detection disparities for underrepresented classes. We propose a methodology for model optimization and bias mitigation, which includes data augmentation, resampling, and metric-specific learning. Using the proposed mitigation approaches, we see improvement in IoU(%) and NDS(%) metrics from 71.3 to 75.6 and 80.6 to 83.7 respectively, for the CNN model. Similarly, for ViT, we observe improvement in IoU and NDS metrics from 74.9 to 79.2 and 83.8 to 87.1 respectively. This research contributes to developing more reliable models and datasets, enhancing inclusiveness for minority classes.
Recommender systems are effective tools for mitigating information overload and have seen extensive applications across various domains. However, the single focus on utility goals proves to be inadequate in addressing real-world concerns, leading to increasing attention to fairness-aware and diversity-aware recommender systems. While most existing studies explore fairness and diversity independently, we identify strong connections between these two domains. In this survey, we first discuss each of them individually and then dive into their connections. Additionally, motivated by the concepts of user-level and item-level fairness, we broaden the understanding of diversity to encompass not only the item level but also the user level. With this expanded perspective on user and item-level diversity, we re-interpret fairness studies from the viewpoint of diversity. This fresh perspective enhances our understanding of fairness-related work and paves the way for potential future research directions. Papers discussed in this survey along with public code links are available at //github.com/YuyingZhao/Awesome-Fairness-and-Diversity-Papers-in-Recommender-Systems .
Despite the importance of trust in human-AI interactions, researchers must adopt questionnaires from other disciplines that lack validation in the AI context. Motivated by the need for reliable and valid measures, we investigated the psychometric quality of two trust questionnaires, the Trust between People and Automation scale (TPA) by Jian et al. (2000) and the Trust Scale for the AI Context (TAI) by Hoffman et al. (2023). In a pre-registered online experiment (N = 1485), participants observed interactions with trustworthy and untrustworthy AI (autonomous vehicle and chatbot). Results support the psychometric quality of the TAI while revealing opportunities to improve the TPA, which we outline in our recommendations for using the two questionnaires. Furthermore, our findings provide additional empirical evidence of trust and distrust as two distinct constructs that may coexist independently. Building on our findings, we highlight the opportunities and added value of measuring both trust and distrust in human-AI research and advocate for further work on both constructs.
Autonomous assistance of people with motor impairments is one of the most promising applications of autonomous robotic systems. Recent studies have reported encouraging results using deep reinforcement learning (RL) in the healthcare domain. Previous studies showed that assistive tasks can be formulated as multi-agent RL, wherein there are two agents: a caregiver and a care-receiver. However, policies trained in multi-agent RL are often sensitive to the policies of other agents. In such a case, a trained caregiver's policy may not work for different care-receivers. To alleviate this issue, we propose a framework that learns a robust caregiver's policy by training it for diverse care-receiver responses. In our framework, diverse care-receiver responses are autonomously learned through trials and errors. In addition, to robustify the care-giver's policy, we propose a strategy for sampling a care-receiver's response in an adversarial manner during the training. We evaluated the proposed method using tasks in an Assistive Gym. We demonstrate that policies trained with a popular deep RL method are vulnerable to changes in policies of other agents and that the proposed framework improves the robustness against such changes.
Deep neural network (DNN) typically involves convolutions, pooling, and activation function. Due to the growing concern about privacy, privacy-preserving DNN becomes a hot research topic. Generally, the convolution and pooling operations can be supported by additive homomorphic and secure comparison, but the secure implementation of activation functions is not so straightforward for the requirements of accuracy and efficiency, especially for the non-linear ones such as exponential, sigmoid, and tanh functions. This paper pays a special attention to the implementation of such non-linear functions in semi-honest model with two-party settings, for which SIRNN is the current state-of-the-art. Different from previous works, we proposed improved implementations for these functions by using their intrinsic features as well as worthy tiny tricks. At first, we propose a novel and efficient protocol for exponential function by using a divide-and-conquer strategy with most of the computations executed locally. Exponential protocol is widely used in machine learning tasks such as Poisson regression, and is also a key component of sigmoid and tanh functions. Next, we take advantage of the symmetry of sigmoid and Tanh, and fine-tune the inputs to reduce the 2PC building blocks, which helps to save overhead and improve performance. As a result, we implement these functions with fewer fundamental building blocks. The comprehensive evaluations show that our protocols achieve state-of-the-art precision while reducing run-time by approximately 57%, 44%, and 42% for exponential (with only negative inputs), sigmoid, and Tanh functions, respectively.
As computer vision algorithms increase in capability, their applications in clinical systems will become more pervasive. These applications include: diagnostics, such as colonoscopy and bronchoscopy; guiding biopsies, minimally invasive interventions, and surgery; automating instrument motion; and providing image guidance using pre-operative scans. Many of these applications depend on the specific visual nature of medical scenes and require designing algorithms to perform in this environment. In this review, we provide an update to the field of camera-based tracking and scene mapping in surgery and diagnostics in medical computer vision. We begin with describing our review process, which results in a final list of 515 papers that we cover. We then give a high-level summary of the state of the art and provide relevant background for those who need tracking and mapping for their clinical applications. After which, we review datasets provided in the field and the clinical needs that motivate their design. Then, we delve into the algorithmic side, and summarize recent developments. This summary should be especially useful for algorithm designers and to those looking to understand the capability of off-the-shelf methods. We maintain focus on algorithms for deformable environments while also reviewing the essential building blocks in rigid tracking and mapping since there is a large amount of crossover in methods. With the field summarized, we discuss the current state of the tracking and mapping methods along with needs for future algorithms, needs for quantification, and the viability of clinical applications. We then provide some research directions and questions. We conclude that new methods need to be designed or combined to support clinical applications in deformable environments, and more focus needs to be put into collecting datasets for training and evaluation.
As highly automated vehicles reach higher deployment rates, they find themselves in increasingly dangerous situations. Knowing that the consequence of a crash is significant for the health of occupants, bystanders, and properties, as well as to the viability of autonomy and adjacent businesses, we must search for more efficacious ways to comprehensively and reliably train autonomous vehicles to better navigate the complex scenarios with which they struggle. We therefore introduce a taxonomy of potentially adversarial elements that may contribute to poor performance or system failures as a means of identifying and elucidating lesser-seen risks. This taxonomy may be used to characterize failures of automation, as well as to support simulation and real-world training efforts by providing a more comprehensive classification system for events resulting in disengagement, collision, or other negative consequences. This taxonomy is created from and tested against real collision events to ensure comprehensive coverage with minimal class overlap and few omissions. It is intended to be used both for the identification of harm-contributing adversarial events and in the generation thereof (to create extreme edge- and corner-case scenarios) in training procedures.
Recurrent neural networks (RNNs) have fast inference and scale efficiently on long sequences, but they are difficult to train and hard to scale. We propose Hawk, an RNN with gated linear recurrences, and Griffin, a hybrid model that mixes gated linear recurrences with local attention. Hawk exceeds the reported performance of Mamba on downstream tasks, while Griffin matches the performance of Llama-2 despite being trained on over 6 times fewer tokens. We also show that Griffin can extrapolate on sequences significantly longer than those seen during training. Our models match the hardware efficiency of Transformers during training, and during inference they have lower latency and significantly higher throughput. We scale Griffin up to 14B parameters, and explain how to shard our models for efficient distributed training.
Reassembly tasks play a fundamental role in many fields and multiple approaches exist to solve specific reassembly problems. In this context, we posit that a general unified model can effectively address them all, irrespective of the input data type (images, 3D, etc.). We introduce DiffAssemble, a Graph Neural Network (GNN)-based architecture that learns to solve reassembly tasks using a diffusion model formulation. Our method treats the elements of a set, whether pieces of 2D patch or 3D object fragments, as nodes of a spatial graph. Training is performed by introducing noise into the position and rotation of the elements and iteratively denoising them to reconstruct the coherent initial pose. DiffAssemble achieves state-of-the-art (SOTA) results in most 2D and 3D reassembly tasks and is the first learning-based approach that solves 2D puzzles for both rotation and translation. Furthermore, we highlight its remarkable reduction in run-time, performing 11 times faster than the quickest optimization-based method for puzzle solving. Code available at //github.com/IIT-PAVIS/DiffAssemble
As research and deployment of AI grows, the computational burden to support and sustain its progress inevitably does too. To train or fine-tune state-of-the-art models in NLP, computer vision, etc., some form of AI hardware acceleration is virtually a requirement. Recent large language models require considerable resources to train and deploy, resulting in significant energy usage, potential carbon emissions, and massive demand for GPUs and other hardware accelerators. However, this surge carries large implications for energy sustainability at the HPC/datacenter level. In this paper, we study the aggregate effect of power-capping GPUs on GPU temperature and power draw at a research supercomputing center. With the right amount of power-capping, we show significant decreases in both temperature and power draw, reducing power consumption and potentially improving hardware life-span with minimal impact on job performance. While power-capping reduces power draw by design, the aggregate system-wide effect on overall energy consumption is less clear; for instance, if users notice job performance degradation from GPU power-caps, they may request additional GPU-jobs to compensate, negating any energy savings or even worsening energy consumption. To our knowledge, our work is the first to conduct and make available a detailed analysis of the effects of GPU power-capping at the supercomputing scale. We hope our work will inspire HPCs/datacenters to further explore, evaluate, and communicate the impact of power-capping AI hardware accelerators for more sustainable AI.
Since DARPA Grand Challenges (rural) in 2004/05 and Urban Challenges in 2007, autonomous driving has been the most active field of AI applications. Almost at the same time, deep learning has made breakthrough by several pioneers, three of them (also called fathers of deep learning), Hinton, Bengio and LeCun, won ACM Turin Award in 2019. This is a survey of autonomous driving technologies with deep learning methods. We investigate the major fields of self-driving systems, such as perception, mapping and localization, prediction, planning and control, simulation, V2X and safety etc. Due to the limited space, we focus the analysis on several key areas, i.e. 2D and 3D object detection in perception, depth estimation from cameras, multiple sensor fusion on the data, feature and task level respectively, behavior modelling and prediction of vehicle driving and pedestrian trajectories.