亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the theory of linear switching systems with discrete time, as in other areas of mathematics, the problem of studying the growth rate of the norms of all possible matrix products $A_{\sigma_{n}}\cdots A_{\sigma_{0}}$ with factors from a set of matrices $\mathscr{A}$ arises. So far, only for a relatively small number of classes of matrices $\mathscr{A}$ has it been possible to accurately describe the sequences of matrices that guarantee the maximum rate of increase of the corresponding norms. Moreover, in almost all cases studied theoretically, the index sequences $\{\sigma_{n}\}$ of matrices maximizing the norms of the corresponding matrix products have been shown to be periodic or so-called Sturmian, which entails a whole set of "good" properties of the sequences $\{A_{\sigma_{n}}\}$, in particular the existence of a limiting frequency of occurrence of each matrix factor $A_{i}\in\mathscr{A}$ in them. In the paper it is shown that this is not always the case: a class of matrices is defined consisting of two $2\times 2$ matrices, similar to rotations in the plane, in which the sequence $\{A_{\sigma_{n}}\}$ maximizing the growth rate of the norms $\|A_{\sigma_{n}}\cdots A_{\sigma_{0}}\|$ is not Sturmian. All considerations are based on numerical modeling and cannot be considered mathematically rigorous in this part; rather, they should be interpreted as a set of questions for further comprehensive theoretical analysis.

相關內容

The hard thresholding technique plays a vital role in the development of algorithms for sparse signal recovery. By merging this technique and heavy-ball acceleration method which is a multi-step extension of the traditional gradient descent method, we propose the so-called heavy-ball-based hard thresholding (HBHT) and heavy-ball-based hard thresholding pursuit (HBHTP) algorithms for signal recovery. It turns out that the HBHT and HBHTP can successfully recover a $k$-sparse signal if the restricted isometry constant of the measurement matrix satisfies $\delta_{3k}<0.618 $ and $\delta_{3k}<0.577,$ respectively. The guaranteed success of HBHT and HBHTP is also shown under the conditions $\delta_{2k}<0.356$ and $\delta_{2k}<0.377,$ respectively. Moreover, the finite convergence and stability of the two algorithms are also established in this paper. Simulations on random problem instances are performed to compare the performance of the proposed algorithms and several existing ones. Empirical results indicate that the HBHTP performs very comparably to a few existing algorithms and it takes less average time to achieve the signal recovery than these existing methods.

Graph Convolutional Networks (GCNs) are one of the most popular architectures that are used to solve classification problems accompanied by graphical information. We present a rigorous theoretical understanding of the effects of graph convolutions in multi-layer networks. We study these effects through the node classification problem of a non-linearly separable Gaussian mixture model coupled with a stochastic block model. First, we show that a single graph convolution expands the regime of the distance between the means where multi-layer networks can classify the data by a factor of at least $1/\sqrt[4]{\mathbb{E}{\rm deg}}$, where $\mathbb{E}{\rm deg}$ denotes the expected degree of a node. Second, we show that with a slightly stronger graph density, two graph convolutions improve this factor to at least $1/\sqrt[4]{n}$, where $n$ is the number of nodes in the graph. Finally, we provide both theoretical and empirical insights into the performance of graph convolutions placed in different combinations among the layers of a network, concluding that the performance is mutually similar for all combinations of the placement. We present extensive experiments on both synthetic and real-world data that illustrate our results.

The binary rank of a $0,1$ matrix is the smallest size of a partition of its ones into monochromatic combinatorial rectangles. A matrix $M$ is called $(k_1, \ldots, k_m ; n_1, \ldots, n_m)$ circulant block diagonal if it is a block matrix with $m$ diagonal blocks, such that for each $i \in [m]$, the $i$th diagonal block of $M$ is the circulant matrix whose first row has $k_i$ ones followed by $n_i-k_i$ zeros, and all of whose other entries are zeros. In this work, we study the binary rank of these matrices and of their complement. In particular, we compare the binary rank of these matrices to their rank over the reals, which forms a lower bound on the former. We present a general method for proving upper bounds on the binary rank of block matrices that have diagonal blocks of some specified structure and ones elsewhere. Using this method, we prove that the binary rank of the complement of a $(k_1, \ldots, k_m ; n_1, \ldots, n_m)$ circulant block diagonal matrix for integers satisfying $n_i>k_i>0$ for each $i \in [m]$ exceeds its real rank by no more than the maximum of $\gcd(n_i,k_i)-1$ over all $i \in [m]$. We further present several sufficient conditions for the binary rank of these matrices to strictly exceed their real rank. By combining the upper and lower bounds, we determine the exact binary rank of various families of matrices and, in addition, significantly generalize a result of Gregory. Motivated by a question of Pullman, we study the binary rank of $k$-regular $0,1$ matrices and of their complement. As an application of our results on circulant block diagonal matrices, we show that for every $k \geq 2$, there exist $k$-regular $0,1$ matrices whose binary rank is strictly larger than that of their complement. Furthermore, we exactly determine for every integer $r$, the smallest possible binary rank of the complement of a $2$-regular $0,1$ matrix with binary rank $r$.

We consider statistical models arising from the common set of solutions to a sparse polynomial system with general coefficients. The maximum likelihood degree counts the number of critical points of the likelihood function restricted to the model. We prove the maximum likelihood degree of a sparse polynomial system is determined by its Newton polytopes and equals the mixed volume of a related Lagrange system of equations.

In this paper, we have proposed a public key cryptography using recursive block matrices involving generalized Fibonacci numbers over a finite field Fp. For this, we define multinacci block matrices, a type of upper triangular matrix involving multinacci matrices at diagonal places and obtained some of its algebraic properties. Moreover, we have set up a method for key element agreement at end users, which makes the cryptography more efficient. The proposed cryptography comes with a large keyspace and its security relies on the Discrete Logarithm Problem(DLP).

In this paper, we propose a depth-first search (DFS) algorithm for searching maximum matchings in general graphs. Unlike blossom shrinking algorithms, which store all possible alternative alternating paths in the super-vertices shrunk from blossoms, the newly proposed algorithm does not involve blossom shrinking. The basic idea is to deflect the alternating path when facing blossoms. The algorithm maintains detour information in an auxiliary stack to minimize the redundant data structures. A benefit of our technique is to avoid spending time on shrinking and expanding blossoms. This DFS algorithm can determine a maximum matching of a general graph with $m$ edges and $n$ vertices in $O(mn)$ time with space complexity $O(n)$.

Covariance estimation for matrix-valued data has received an increasing interest in applications. Unlike previous works that rely heavily on matrix normal distribution assumption and the requirement of fixed matrix size, we propose a class of distribution-free regularized covariance estimation methods for high-dimensional matrix data under a separability condition and a bandable covariance structure. Under these conditions, the original covariance matrix is decomposed into a Kronecker product of two bandable small covariance matrices representing the variability over row and column directions. We formulate a unified framework for estimating bandable covariance, and introduce an efficient algorithm based on rank one unconstrained Kronecker product approximation. The convergence rates of the proposed estimators are established, and the derived minimax lower bound shows our proposed estimator is rate-optimal under certain divergence regimes of matrix size. We further introduce a class of robust covariance estimators and provide theoretical guarantees to deal with heavy-tailed data. We demonstrate the superior finite-sample performance of our methods using simulations and real applications from a gridded temperature anomalies dataset and a S&P 500 stock data analysis.

Low-rank matrix estimation under heavy-tailed noise is challenging, both computationally and statistically. Convex approaches have been proven statistically optimal but suffer from high computational costs, especially since robust loss functions are usually non-smooth. More recently, computationally fast non-convex approaches via sub-gradient descent are proposed, which, unfortunately, fail to deliver a statistically consistent estimator even under sub-Gaussian noise. In this paper, we introduce a novel Riemannian sub-gradient (RsGrad) algorithm which is not only computationally efficient with linear convergence but also is statistically optimal, be the noise Gaussian or heavy-tailed. Convergence theory is established for a general framework and specific applications to absolute loss, Huber loss, and quantile loss are investigated. Compared with existing non-convex methods, ours reveals a surprising phenomenon of dual-phase convergence. In phase one, RsGrad behaves as in a typical non-smooth optimization that requires gradually decaying stepsizes. However, phase one only delivers a statistically sub-optimal estimator which is already observed in the existing literature. Interestingly, during phase two, RsGrad converges linearly as if minimizing a smooth and strongly convex objective function and thus a constant stepsize suffices. Underlying the phase-two convergence is the smoothing effect of random noise to the non-smooth robust losses in an area close but not too close to the truth. Lastly, RsGrad is applicable for low-rank tensor estimation under heavy-tailed noise where a statistically optimal rate is attainable with the same phenomenon of dual-phase convergence, and a novel shrinkage-based second-order moment method is guaranteed to deliver a warm initialization. Numerical simulations confirm our theoretical discovery and showcase the superiority of RsGrad over prior methods.

Convection-diffusion-reaction equations model the conservation of scalar quantities. From the analytic point of view, solution of these equations satisfy under certain conditions maximum principles, which represent physical bounds of the solution. That the same bounds are respected by numerical approximations of the solution is often of utmost importance in practice. The mathematical formulation of this property, which contributes to the physical consistency of a method, is called Discrete Maximum Principle (DMP). In many applications, convection dominates diffusion by several orders of magnitude. It is well known that standard discretizations typically do not satisfy the DMP in this convection-dominated regime. In fact, in this case, it turns out to be a challenging problem to construct discretizations that, on the one hand, respect the DMP and, on the other hand, compute accurate solutions. This paper presents a survey on finite element methods, with a main focus on the convection-dominated regime, that satisfy a local or a global DMP. The concepts of the underlying numerical analysis are discussed. The survey reveals that for the steady-state problem there are only a few discretizations, all of them nonlinear, that at the same time satisfy the DMP and compute reasonably accurate solutions, e.g., algebraically stabilized schemes. Moreover, most of these discretizations have been developed in recent years, showing the enormous progress that has been achieved lately. Methods based on algebraic stabilization, nonlinear and linear ones, are currently as well the only finite element methods that combine the satisfaction of the global DMP and accurate numerical results for the evolutionary equations in the convection-dominated situation.

We recall some of the history of the information-theoretic approach to deriving core results in probability theory and indicate parts of the recent resurgence of interest in this area with current progress along several interesting directions. Then we give a new information-theoretic proof of a finite version of de Finetti's classical representation theorem for finite-valued random variables. We derive an upper bound on the relative entropy between the distribution of the first $k$ in a sequence of $n$ exchangeable random variables, and an appropriate mixture over product distributions. The mixing measure is characterised as the law of the empirical measure of the original sequence, and de Finetti's result is recovered as a corollary. The proof is nicely motivated by the Gibbs conditioning principle in connection with statistical mechanics, and it follows along an appealing sequence of steps. The technical estimates required for these steps are obtained via the use of a collection of combinatorial tools known within information theory as `the method of types.'

北京阿比特科技有限公司