亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a novel approach to network management by integrating intent-based networking (IBN) with knowledge graphs (KGs), creating a more intuitive and efficient pipeline for service orchestration. By mapping high-level business intents onto network configurations using KGs, the system dynamically adapts to network changes and service demands, ensuring optimal performance and resource allocation. We utilize knowledge graph embedding (KGE) to acquire context information from the network and service providers. The KGE model is trained using a custom KG and Gaussian embedding model and maps intents to services via service prediction and intent validation processes. The proposed intent lifecycle enables intent translation and assurance by only deploying validated intents according to network and resource availability. We evaluate the trained model for its efficiency in service mapping and intent validation tasks using simulated environments and extensive experiments. The service prediction and intent verification accuracy greater than 80 percent is achieved for the trained KGE model on a custom service orchestration intent knowledge graph (IKG) based on TMForum's intent common model.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

This paper introduces a novel framework for matrix diagonalization, recasting it as a sequential decision-making problem and applying the power of Decision Transformers (DTs). Our approach determines optimal pivot selection during diagonalization with the Jacobi algorithm, leading to significant speedups compared to the traditional max-element Jacobi method. To bolster robustness, we integrate an epsilon-greedy strategy, enabling success in scenarios where deterministic approaches fail. This work demonstrates the effectiveness of DTs in complex computational tasks and highlights the potential of reimagining mathematical operations through a machine learning lens. Furthermore, we establish the generalizability of our method by using transfer learning to diagonalize matrices of smaller sizes than those trained.

In the recent literature on machine learning and decision making, calibration has emerged as a desirable and widely-studied statistical property of the outputs of binary prediction models. However, the algorithmic aspects of measuring model calibration have remained relatively less well-explored. Motivated by [BGHN23], which proposed a rigorous framework for measuring distances to calibration, we initiate the algorithmic study of calibration through the lens of property testing. We define the problem of calibration testing from samples where given $n$ draws from a distribution $\mathcal{D}$ on $(predictions, binary outcomes)$, our goal is to distinguish between the case where $\mathcal{D}$ is perfectly calibrated, and the case where $\mathcal{D}$ is $\varepsilon$-far from calibration. We make the simple observation that the empirical smooth calibration linear program can be reformulated as an instance of minimum-cost flow on a highly-structured graph, and design an exact dynamic programming-based solver for it which runs in time $O(n\log^2(n))$, and solves the calibration testing problem information-theoretically optimally in the same time. This improves upon state-of-the-art black-box linear program solvers requiring $\Omega(n^\omega)$ time, where $\omega > 2$ is the exponent of matrix multiplication. We also develop algorithms for tolerant variants of our testing problem improving upon black-box linear program solvers, and give sample complexity lower bounds for alternative calibration measures to the one considered in this work. Finally, we present experiments showing the testing problem we define faithfully captures standard notions of calibration, and that our algorithms scale efficiently to accommodate large sample sizes.

We present a novel benchmark dataset and prediction tasks for investigating approaches to assess cognitive function through analysis of connected speech. The dataset consists of speech samples and clinical information for speakers of Mandarin Chinese and English with different levels of cognitive impairment as well as individuals with normal cognition. These data have been carefully matched by age and sex by propensity score analysis to ensure balance and representativity in model training. The prediction tasks encompass mild cognitive impairment diagnosis and cognitive test score prediction. This framework was designed to encourage the development of approaches to speech-based cognitive assessment which generalise across languages. We illustrate it by presenting baseline prediction models that employ language-agnostic and comparable features for diagnosis and cognitive test score prediction. The models achieved unweighted average recall was 59.2% in diagnosis, and root mean squared error of 2.89 in score prediction.

In this paper, we propose a novel joint deep reinforcement learning (DRL)-based solution to optimize the utility of an uncrewed aerial vehicle (UAV)-assisted communication network. To maximize the number of users served within the constraints of the UAV's limited bandwidth and power resources, we employ deep Q-Networks (DQN) and deep deterministic policy gradient (DDPG) algorithms for optimal resource allocation to ground users with heterogeneous data rate demands. The DQN algorithm dynamically allocates multiple bandwidth resource blocks to different users based on current demand and available resource states. Simultaneously, the DDPG algorithm manages power allocation, continuously adjusting power levels to adapt to varying distances and fading conditions, including Rayleigh fading for non-line-of-sight (NLoS) links and Rician fading for line-of-sight (LoS) links. Our joint DRL-based solution demonstrates an increase of up to 41% in the number of users served compared to scenarios with equal bandwidth and power allocation.

This paper presents Neural Visibility Field (NVF), a novel uncertainty quantification method for Neural Radiance Fields (NeRF) applied to active mapping. Our key insight is that regions not visible in the training views lead to inherently unreliable color predictions by NeRF at this region, resulting in increased uncertainty in the synthesized views. To address this, we propose to use Bayesian Networks to composite position-based field uncertainty into ray-based uncertainty in camera observations. Consequently, NVF naturally assigns higher uncertainty to unobserved regions, aiding robots to select the most informative next viewpoints. Extensive evaluations show that NVF excels not only in uncertainty quantification but also in scene reconstruction for active mapping, outperforming existing methods.

We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast

This paper serves as a survey of recent advances in large margin training and its theoretical foundations, mostly for (nonlinear) deep neural networks (DNNs) that are probably the most prominent machine learning models for large-scale data in the community over the past decade. We generalize the formulation of classification margins from classical research to latest DNNs, summarize theoretical connections between the margin, network generalization, and robustness, and introduce recent efforts in enlarging the margins for DNNs comprehensively. Since the viewpoint of different methods is discrepant, we categorize them into groups for ease of comparison and discussion in the paper. Hopefully, our discussions and overview inspire new research work in the community that aim to improve the performance of DNNs, and we also point to directions where the large margin principle can be verified to provide theoretical evidence why certain regularizations for DNNs function well in practice. We managed to shorten the paper such that the crucial spirit of large margin learning and related methods are better emphasized.

Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.

This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司