亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The widespread adoption of Image Processing has propelled Object Recognition (OR) models into essential roles across various applications, demonstrating the power of AI and enabling crucial services. Among the applications, traffic sign recognition stands out as a popular research topic, given its critical significance in the development of autonomous vehicles. Despite their significance, real-world challenges, such as alterations to traffic signs, can negatively impact the performance of OR models. This study investigates the influence of altered traffic signs on the accuracy and effectiveness of object recognition, employing a publicly available dataset to introduce alterations in shape, color, content, visibility, angles and background. Focusing on the YOLOv7 (You Only Look Once) model, the study demonstrates a notable decline in detection and classification accuracy when confronted with traffic signs in unusual conditions including the altered traffic signs. Notably, the alterations explored in this study are benign examples and do not involve algorithms used for generating adversarial machine learning samples. This study highlights the significance of enhancing the robustness of object detection models in real-life scenarios and the need for further investigation in this area to improve their accuracy and reliability.

相關內容

In the ever-evolving era of Artificial Intelligence (AI), model performance has constituted a key metric driving innovation, leading to an exponential growth in model size and complexity. However, sustainability and energy efficiency have been critical requirements during deployment in contemporary industrial settings, necessitating the use of data-efficient approaches such as few-shot learning. In this paper, to alleviate the burden of lengthy model training and minimize energy consumption, a finetuning approach to adapt standard object detection models to downstream tasks is examined. Subsequently, a thorough case study and evaluation of the energy demands of the developed models, applied in object detection benchmark datasets from volatile industrial environments is presented. Specifically, different finetuning strategies as well as utilization of ancillary evaluation data during training are examined, and the trade-off between performance and efficiency is highlighted in this low-data regime. Finally, this paper introduces a novel way to quantify this trade-off through a customized Efficiency Factor metric.

Graphs are ubiquitous in social networks and biochemistry, where Graph Neural Networks (GNN) are the state-of-the-art models for prediction. Graphs can be evolving and it is vital to formally model and understand how a trained GNN responds to graph evolution. We propose a smooth parameterization of the GNN predicted distributions using axiomatic attribution, where the distributions are on a low-dimensional manifold within a high-dimensional embedding space. We exploit the differential geometric viewpoint to model distributional evolution as smooth curves on the manifold. We reparameterize families of curves on the manifold and design a convex optimization problem to find a unique curve that concisely approximates the distributional evolution for human interpretation. Extensive experiments on node classification, link prediction, and graph classification tasks with evolving graphs demonstrate the better sparsity, faithfulness, and intuitiveness of the proposed method over the state-of-the-art methods.

In this paper, we introduce PixArt-\Sigma, a Diffusion Transformer model~(DiT) capable of directly generating images at 4K resolution. PixArt-\Sigma represents a significant advancement over its predecessor, PixArt-\alpha, offering images of markedly higher fidelity and improved alignment with text prompts. A key feature of PixArt-\Sigma is its training efficiency. Leveraging the foundational pre-training of PixArt-\alpha, it evolves from the `weaker' baseline to a `stronger' model via incorporating higher quality data, a process we term "weak-to-strong training". The advancements in PixArt-\Sigma are twofold: (1) High-Quality Training Data: PixArt-\Sigma incorporates superior-quality image data, paired with more precise and detailed image captions. (2) Efficient Token Compression: we propose a novel attention module within the DiT framework that compresses both keys and values, significantly improving efficiency and facilitating ultra-high-resolution image generation. Thanks to these improvements, PixArt-\Sigma achieves superior image quality and user prompt adherence capabilities with significantly smaller model size (0.6B parameters) than existing text-to-image diffusion models, such as SDXL (2.6B parameters) and SD Cascade (5.1B parameters). Moreover, PixArt-\Sigma's capability to generate 4K images supports the creation of high-resolution posters and wallpapers, efficiently bolstering the production of high-quality visual content in industries such as film and gaming.

This paper explores the potential of Physics-Informed Neural Networks (PINNs) to serve as Reduced Order Models (ROMs) for simulating the flow field within stirred tank reactors (STRs). We solve the two-dimensional stationary Navier-Stokes equations within a geometrically intricate domain and explore methodologies that allow us to integrate additional physical insights into the model. These approaches include imposing the Dirichlet boundary conditions (BCs) strongly and employing domain decomposition (DD), with both overlapping and non-overlapping subdomains. We adapt the Extended Physics-Informed Neural Network (XPINN) approach to solve different sets of equations in distinct subdomains based on the diverse flow characteristics present in each region. Our exploration results in a hierarchy of models spanning various levels of complexity, where the best models exhibit l1 prediction errors of less than 1% for both pressure and velocity. To illustrate the reproducibility of our approach, we track the errors over repeated independent training runs of the best identified model and show its reliability. Subsequently, by incorporating the stirring rate as a parametric input, we develop a fast-to-evaluate model of the flow capable of interpolating across a wide range of Reynolds numbers. Although we exclusively restrict ourselves to STRs in this work, we conclude that the steps taken to obtain the presented model hierarchy can be transferred to other applications.

Generative Artificial Intelligence (GAI) shows remarkable productivity and creativity in Mobile Edge Networks, such as the metaverse and the Industrial Internet of Things. Federated learning is a promising technique for effectively training GAI models in mobile edge networks due to its data distribution. However, there is a notable issue with communication consumption when training large GAI models like generative diffusion models in mobile edge networks. Additionally, the substantial energy consumption associated with training diffusion-based models, along with the limited resources of edge devices and complexities of network environments, pose challenges for improving the training efficiency of GAI models. To address this challenge, we propose an on-demand quantized energy-efficient federated diffusion approach for mobile edge networks. Specifically, we first design a dynamic quantized federated diffusion training scheme considering various demands from the edge devices. Then, we study an energy efficiency problem based on specific quantization requirements. Numerical results show that our proposed method significantly reduces system energy consumption and transmitted model size compared to both baseline federated diffusion and fixed quantized federated diffusion methods while effectively maintaining reasonable quality and diversity of generated data.

Advanced Audio-Visual Speech Recognition (AVSR) systems have been observed to be sensitive to missing video frames, performing even worse than single-modality models. While applying the dropout technique to the video modality enhances robustness to missing frames, it simultaneously results in a performance loss when dealing with complete data input. In this paper, we investigate this contrasting phenomenon from the perspective of modality bias and reveal that an excessive modality bias on the audio caused by dropout is the underlying reason. Moreover, we present the Modality Bias Hypothesis (MBH) to systematically describe the relationship between modality bias and robustness against missing modality in multimodal systems. Building on these findings, we propose a novel Multimodal Distribution Approximation with Knowledge Distillation (MDA-KD) framework to reduce over-reliance on the audio modality and to maintain performance and robustness simultaneously. Finally, to address an entirely missing modality, we adopt adapters to dynamically switch decision strategies. The effectiveness of our proposed approach is evaluated and validated through a series of comprehensive experiments using the MISP2021 and MISP2022 datasets. Our code is available at //github.com/dalision/ModalBiasAVSR

We introduce Syntax-Aware Fill-In-the-Middle (SAFIM), a new benchmark for evaluating Large Language Models (LLMs) on the code Fill-in-the-Middle (FIM) task. This benchmark focuses on syntax-aware completions of program structures such as code blocks and conditional expressions, and includes 17,720 examples from multiple programming languages, sourced from recent code submissions after April 2022 to minimize data contamination. SAFIM provides a robust framework with various prompt designs and novel syntax-aware post-processing techniques, facilitating accurate and fair comparisons across LLMs. Our comprehensive evaluation of 15 LLMs shows that FIM pretraining not only enhances FIM proficiency but also improves Left-to-Right (L2R) inference using LLMs. Our findings challenge conventional beliefs and suggest that pretraining methods and data quality have more impact than model size. SAFIM thus serves as a foundational platform for future research in effective pretraining strategies for code LLMs. The evaluation toolkit and dataset are available at //github.com/gonglinyuan/safim, and the leaderboard is available at //safimbenchmark.com.

Graph Neural Networks (GNNs) are state-of-the-art models for performing prediction tasks on graphs. While existing GNNs have shown great performance on various tasks related to graphs, little attention has been paid to the scenario where out-of-distribution (OOD) nodes exist in the graph during training and inference. Borrowing the concept from CV and NLP, we define OOD nodes as nodes with labels unseen from the training set. Since a lot of networks are automatically constructed by programs, real-world graphs are often noisy and may contain nodes from unknown distributions. In this work, we define the problem of graph learning with out-of-distribution nodes. Specifically, we aim to accomplish two tasks: 1) detect nodes which do not belong to the known distribution and 2) classify the remaining nodes to be one of the known classes. We demonstrate that the connection patterns in graphs are informative for outlier detection, and propose Out-of-Distribution Graph Attention Network (OODGAT), a novel GNN model which explicitly models the interaction between different kinds of nodes and separate inliers from outliers during feature propagation. Extensive experiments show that OODGAT outperforms existing outlier detection methods by a large margin, while being better or comparable in terms of in-distribution classification.

Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司