We evaluate the performance of the LoRaWAN Long-Range Frequency Hopping Spread Spectrum (LR-FHSS) technique using a device-level probabilistic strategy for code rate and header replica allocation. Specifically, we investigate the effects of different header replica and code rate allocations at each end-device, guided by a probability distribution provided by the network server. As a benchmark, we compare the proposed strategy with the standardized LR-FHSS data rates DR8 and DR9. Our numerical results demonstrate that the proposed strategy consistently outperforms the DR8 and DR9 standard data rates across all considered scenarios. Notably, our findings reveal that the optimal distribution rarely includes data rate DR9, while data rate DR8 significantly contributes to the goodput and energy efficiency optimizations.
With the rapid advancement of artificial intelligence (AI), generative AI (GenAI) has emerged as a transformative tool, enabling customized and personalized AI-generated content (AIGC) services. However, GenAI models with billions of parameters require substantial memory capacity and computational power for deployment and execution, presenting significant challenges to resource-limited edge networks. In this paper, we address the joint model caching and resource allocation problem in GenAI-enabled wireless edge networks. Our objective is to balance the trade-off between delivering high-quality AIGC and minimizing the delay in AIGC service provisioning. To tackle this problem, we employ a deep deterministic policy gradient (DDPG)-based reinforcement learning approach, capable of efficiently determining optimal model caching and resource allocation decisions for AIGC services in response to user mobility and time-varying channel conditions. Numerical results demonstrate that DDPG achieves a higher model hit ratio and provides superior-quality, lower-latency AIGC services compared to other benchmark solutions.
State-of-the-art Multiple Object Tracking (MOT) approaches have shown remarkable performance when trained and evaluated on current benchmarks. However, these benchmarks primarily consist of clear weather scenarios, overlooking adverse atmospheric conditions such as fog, haze, smoke and dust. As a result, the robustness of trackers against these challenging conditions remains underexplored. To address this gap, we introduce physics-based volumetric fog simulation method for arbitrary MOT datasets, utilizing frame-by-frame monocular depth estimation and a fog formation optical model. We enhance our simulation by rendering both homogeneous and heterogeneous fog and propose to use the dark channel prior method to estimate atmospheric light, showing promising results even in night and indoor scenes. We present the leading benchmark MOTChallenge (third release) augmented with fog (smoke for indoor scenes) of various intensities and conduct a comprehensive evaluation of MOT methods, revealing their limitations under fog and fog-like challenges.
This paper presents innovative approaches to optimization problems, focusing on both Single-Objective Multi-Modal Optimization (SOMMOP) and Multi-Objective Optimization (MOO). In SOMMOP, we integrate chaotic evolution with niching techniques, as well as Persistence-Based Clustering combined with Gaussian mutation. The proposed algorithms, Chaotic Evolution with Deterministic Crowding (CEDC) and Chaotic Evolution with Clustering Algorithm (CECA), utilize chaotic dynamics to enhance population diversity and improve search efficiency. For MOO, we extend these methods into a comprehensive framework that incorporates Uncertainty-Based Selection, Adaptive Parameter Tuning, and introduces a radius \( R \) concept in deterministic crowding, which enables clearer and more precise separation of populations at peak points. Experimental results demonstrate that the proposed algorithms outperform traditional methods, achieving superior optimization accuracy and robustness across a variety of benchmark functions.
In the Fully Sharded Data Parallel (FSDP) training pipeline, collective operations can be interleaved to maximize the communication/computation overlap. In this scenario, outstanding operations such as Allgather and Reduce-Scatter can compete for the injection bandwidth and create pipeline bubbles. To address this problem, we propose a novel bandwidth-optimal Allgather collective algorithm that leverages hardware multicast. We use multicast to build a constant-time reliable Broadcast protocol, a building block for constructing an optimal Allgather schedule. Our Allgather algorithm achieves 2x traffic reduction on a 188-node testbed. To free the host side from running the protocol, we employ SmartNIC offloading. We extract the parallelism in our Allgather algorithm and map it to a SmartNIC specialized for hiding the cost of data movement. We show that our SmartNIC-offloaded collective progress engine can scale to the next generation of 1.6 Tbit/s links.
As Large Language Models (LLMs) continue to advance in natural language processing (NLP), their ability to stably follow instructions in long-context inputs has become crucial for real-world applications. While existing benchmarks assess various LLM capabilities, they rarely focus on instruction-following in long-context scenarios or stability on different inputs. In response, we introduce the Long-context Instruction-Following Benchmark (LIFBench), a scalable dataset designed to evaluate LLMs' instruction-following capabilities and stability across long contexts. LIFBench comprises three long-context scenarios and eleven diverse tasks, supported by 2,766 instructions generated through an automated expansion method across three dimensions: length, expression, and variables. For evaluation, we propose LIFEval, a rubric-based assessment framework that provides precise, automated scoring of complex LLM responses without relying on LLM-assisted evaluations or human judgments. This approach facilitates a comprehensive analysis of model performance and stability across various perspectives. We conduct extensive experiments on 20 notable LLMs across six length intervals, analyzing their instruction-following capabilities and stability. Our work contributes LIFBench and LIFEval as robust tools for assessing LLM performance in complex, long-context settings, providing insights that can inform future LLM development.
The remarkable performance achieved by Large Language Models (LLM) has driven research efforts to leverage them for a wide range of tasks and input modalities. In speech-to-text (S2T) tasks, the emerging solution consists of projecting the output of the encoder of a Speech Foundational Model (SFM) into the LLM embedding space through an adapter module. However, no work has yet investigated how much the downstream-task performance depends on each component (SFM, adapter, LLM) nor whether the best design of the adapter depends on the chosen SFM and LLM. To fill this gap, we evaluate the combination of 5 adapter modules, 2 LLMs (Mistral and Llama), and 2 SFMs (Whisper and SeamlessM4T) on two widespread S2T tasks, namely Automatic Speech Recognition and Speech Translation. Our results demonstrate that the SFM plays a pivotal role in downstream performance, while the adapter choice has moderate impact and depends on the SFM and LLM.
Multi-Modal Language Models (MLLMs) have transformed artificial intelligence by combining visual and text data, making applications like image captioning, visual question answering, and multi-modal content creation possible. This ability to understand and work with complex information has made MLLMs useful in areas such as healthcare, autonomous systems, and digital content. However, integrating multiple types of data also creates security risks. Attackers can manipulate either the visual or text inputs, or both, to make the model produce unintended or even harmful responses. This paper reviews how visual inputs in MLLMs can be exploited by various attack strategies. We break down these attacks into categories: simple visual tweaks and cross-modal manipulations, as well as advanced strategies like VLATTACK, HADES, and Collaborative Multimodal Adversarial Attack (Co-Attack). These attacks can mislead even the most robust models while looking nearly identical to the original visuals, making them hard to detect. We also discuss the broader security risks, including threats to privacy and safety in important applications. To counter these risks, we review current defense methods like the SmoothVLM framework, pixel-wise randomization, and MirrorCheck, looking at their strengths and limitations. We also discuss new methods to make MLLMs more secure, including adaptive defenses, better evaluation tools, and security approaches that protect both visual and text data. By bringing together recent developments and identifying key areas for improvement, this review aims to support the creation of more secure and reliable multi-modal AI systems for real-world use.
Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (\emph{e.g.,} social network analysis and recommender systems), computer vision (\emph{e.g.,} object detection and point cloud learning), and natural language processing (\emph{e.g.,} relation extraction and sequence learning), to name a few. With the emergence of Transformers in natural language processing and computer vision, graph Transformers embed a graph structure into the Transformer architecture to overcome the limitations of local neighborhood aggregation while avoiding strict structural inductive biases. In this paper, we present a comprehensive review of GNNs and graph Transformers in computer vision from a task-oriented perspective. Specifically, we divide their applications in computer vision into five categories according to the modality of input data, \emph{i.e.,} 2D natural images, videos, 3D data, vision + language, and medical images. In each category, we further divide the applications according to a set of vision tasks. Such a task-oriented taxonomy allows us to examine how each task is tackled by different GNN-based approaches and how well these approaches perform. Based on the necessary preliminaries, we provide the definitions and challenges of the tasks, in-depth coverage of the representative approaches, as well as discussions regarding insights, limitations, and future directions.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.