亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sequential recommendation, where user preference is dynamically inferred from sequential historical behaviors, is a critical task in recommender systems (RSs). To further optimize long-term user engagement, offline reinforcement-learning-based RSs have become a mainstream technique as they provide an additional advantage in avoiding global explorations that may harm online users' experiences. However, previous studies mainly focus on discrete action and policy spaces, which might have difficulties in handling dramatically growing items efficiently. To mitigate this issue, in this paper, we aim to design an algorithmic framework applicable to continuous policies. To facilitate the control in the low-dimensional but dense user preference space, we propose an \underline{\textbf{E}}fficient \underline{\textbf{Co}}ntinuous \underline{\textbf{C}}ontrol framework (ECoC). Based on a statistically tested assumption, we first propose the novel unified action representation abstracted from normalized user and item spaces. Then, we develop the corresponding policy evaluation and policy improvement procedures. During this process, strategic exploration and directional control in terms of unified actions are carefully designed and crucial to final recommendation decisions. Moreover, beneficial from unified actions, the conservatism regularization for policies and value functions are combined and perfectly compatible with the continuous framework. The resulting dual regularization ensures the successful offline training of RL-based recommendation policies. Finally, we conduct extensive experiments to validate the effectiveness of our framework. The results show that compared to the discrete baselines, our ECoC is trained far more efficiently. Meanwhile, the final policies outperform baselines in both capturing the offline data and gaining long-term rewards.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

While federated learning leverages distributed client resources, it faces challenges due to heterogeneous client capabilities. This necessitates allocating models suited to clients' resources and careful parameter aggregation to accommodate this heterogeneity. We propose HypeMeFed, a novel federated learning framework for supporting client heterogeneity by combining a multi-exit network architecture with hypernetwork-based model weight generation. This approach aligns the feature spaces of heterogeneous model layers and resolves per-layer information disparity during weight aggregation. To practically realize HypeMeFed, we also propose a low-rank factorization approach to minimize computation and memory overhead associated with hypernetworks. Our evaluations on a real-world heterogeneous device testbed indicate that \system enhances accuracy by 5.12% over FedAvg, reduces the hypernetwork memory requirements by 98.22%, and accelerates its operations by 1.86x compared to a naive hypernetwork approach. These results demonstrate HypeMeFed's effectiveness in leveraging and engaging heterogeneous clients for federated learning.

The advent of large language models (LLMs) has spurred considerable interest in advancing autonomous LLMs-based agents, particularly in intriguing applications within smartphone graphical user interfaces (GUIs). When presented with a task goal, these agents typically emulate human actions within a GUI environment until the task is completed. However, a key challenge lies in devising effective plans to guide action prediction in GUI tasks, though planning have been widely recognized as effective for decomposing complex tasks into a series of steps. Specifically, given the dynamic nature of environmental GUIs following action execution, it is crucial to dynamically adapt plans based on environmental feedback and action history.We show that the widely-used ReAct approach fails due to the excessively long historical dialogues. To address this challenge, we propose a novel approach called Dynamic Planning of Thoughts (D-PoT) for LLM-based GUI agents.D-PoT involves the dynamic adjustment of planning based on the environmental feedback and execution history. Experimental results reveal that the proposed D-PoT significantly surpassed the strong GPT-4V baseline by +12.7% (34.66% $\rightarrow$ 47.36%) in accuracy. The analysis highlights the generality of dynamic planning in different backbone LLMs, as well as the benefits in mitigating hallucinations and adapting to unseen tasks. Code is available at //github.com/sqzhang-lazy/D-PoT.

The opacity of AI models necessitates both validation and evaluation before their integration into services. To investigate these models, explainable AI (XAI) employs methods that elucidate the relationship between input features and output predictions. The operations of XAI extend beyond the execution of a single algorithm, involving a series of activities that include preprocessing data, adjusting XAI to align with model parameters, invoking the model to generate predictions, and summarizing the XAI results. Adversarial attacks are well-known threats that aim to mislead AI models. The assessment complexity, especially for XAI, increases when open-source AI models are subject to adversarial attacks, due to various combinations. To automate the numerous entities and tasks involved in XAI-based assessments, we propose a cloud-based service framework that encapsulates computing components as microservices and organizes assessment tasks into pipelines. The current XAI tools are not inherently service-oriented. This framework also integrates open XAI tool libraries as part of the pipeline composition. We demonstrate the application of XAI services for assessing five quality attributes of AI models: (1) computational cost, (2) performance, (3) robustness, (4) explanation deviation, and (5) explanation resilience across computer vision and tabular cases. The service framework generates aggregated analysis that showcases the quality attributes for more than a hundred combination scenarios.

Federated learning heavily relies on distributed gradient descent techniques. In the situation where gradient information is not available, the gradients need to be estimated from zeroth-order information, which typically involves computing finite-differences along isotropic random directions. This method suffers from high estimation errors, as the geometric features of the objective landscape may be overlooked during the isotropic sampling. In this work, we propose a non-isotropic sampling method to improve the gradient estimation procedure. Gradients in our method are estimated in a subspace spanned by historical trajectories of solutions, aiming to encourage the exploration of promising regions and hence improve the convergence. The proposed method uses a covariance matrix for sampling which is a convex combination of two parts. The first part is a thin projection matrix containing the basis of the subspace which is designed to improve the exploitation ability. The second part is the historical trajectories. We implement this method in zeroth-order federated settings, and show that the convergence rate aligns with existing ones while introducing no significant overheads in communication or local computation. The effectiveness of our proposal is verified on several numerical experiments in comparison to several commonly-used zeroth-order federated optimization algorithms.

The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.

Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.

Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.

While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司