亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Weighted automata are a generalization of nondeterministic automata that associate a weight drawn from a semiring $K$ with every transition and every state. Their behaviours can be formalized either as weighted language equivalence or weighted bisimulation. In this paper we explore the properties of weighted automata in the framework of coalgebras over (i) the category $\mathsf{SMod}$ of semimodules over a semiring $K$ and $K$-linear maps, and (ii) the category $\mathsf{Set}$ of sets and maps. We show that the behavioural equivalences defined by the corresponding final coalgebras in these two cases characterize weighted language equivalence and weighted bisimulation, respectively. These results extend earlier work by Bonchi et al. using the category $\mathsf{Vect}$ of vector spaces and linear maps as the underlying model for weighted automata with weights drawn from a field $K$. The key step in our work is generalizing the notions of linear relation and linear bisimulation of Boreale from vector spaces to semimodules using the concept of the kernel of a $K$-linear map in the sense of universal algebra. We also provide an abstract procedure for forward partition refinement for computing weighted language equivalence. Since for weighted automata defined over semirings the problem is undecidable in general, it is guaranteed to halt only in special cases. We provide sufficient conditions for the termination of our procedure. Although the results are similar to those of Bonchi et al., many of our proofs are new, especially those about the coalgebra in $\mathsf{SMod}$ characterizing weighted language equivalence.

相關內容

In this paper, we propose an analysis of the automorphism group of polar codes, with the scope of designing codes tailored for automorphism ensemble (AE) decoding. We prove the equivalence between the notion of decreasing monomial codes and the universal partial order (UPO) framework for the description of polar codes. Then, we analyze the algebraic properties of the affine automorphisms group of polar codes, providing a novel description of its structure and proposing a classification of automorphisms providing the same results under permutation decoding. Finally, we propose a method to list all the automorphisms that may lead to different candidates under AE decoding; by introducing the concept of redundant automorphisms, we find the maximum number of permutations providing possibly different codeword candidates under AE-SC, proposing a method to list all of them. A numerical analysis of the error correction performance of AE algorithm for the decoding of polar codes concludes the paper.

The Minimum Enclosing Ball (MEB) problem is one of the most fundamental problems in clustering, with applications in operations research, statistics and computational geometry. In this works, we give the first differentially private (DP) fPTAS for the Minimum Enclosing Ball problem, improving both on the runtime and the utility bound of the best known DP-PTAS for the problem, of Ghazi et al. (2020). Given $n$ points in $\R^d$ that are covered by the ball $B(\theta_{opt},r_{opt})$, our simple iterative DP-algorithm returns a ball $B(\theta,r)$ where $r\leq (1+\gamma)r_{opt}$ and which leaves at most $\tilde O(\frac{\sqrt d}{\gamma^2\epsilon})$ points uncovered in $\tilde O(\nicefrac n {\gamma^2})$-time. We also give a local-model version of our algorithm, that leaves at most $\tilde O(\frac{\sqrt {nd}}{\gamma^2\epsilon})$ points uncovered, improving on the $n^{0.67}$-bound of Nissim and Stemmer (2018) (at the expense of other parameters). In addition, we test our algorithm empirically and discuss future open problems.

Neural networks with the Rectified Linear Unit (ReLU) nonlinearity are described by a vector of parameters $\theta$, and realized as a piecewise linear continuous function $R_{\theta}: x \in \mathbb R^{d} \mapsto R_{\theta}(x) \in \mathbb R^{k}$. Natural scalings and permutations operations on the parameters $\theta$ leave the realization unchanged, leading to equivalence classes of parameters that yield the same realization. These considerations in turn lead to the notion of identifiability -- the ability to recover (the equivalence class of) $\theta$ from the sole knowledge of its realization $R_{\theta}$. The overall objective of this paper is to introduce an embedding for ReLU neural networks of any depth, $\Phi(\theta)$, that is invariant to scalings and that provides a locally linear parameterization of the realization of the network. Leveraging these two key properties, we derive some conditions under which a deep ReLU network is indeed locally identifiable from the knowledge of the realization on a finite set of samples $x_{i} \in \mathbb R^{d}$. We study the shallow case in more depth, establishing necessary and sufficient conditions for the network to be identifiable from a bounded subset $\mathcal X \subseteq \mathbb R^{d}$.

The main two algorithms for computing the numerical radius are the level-set method of Mengi and Overton and the cutting-plane method of Uhlig. Via new analyses, we explain why the cutting-plane approach is sometimes much faster or much slower than the level-set one and then propose a new hybrid algorithm that remains efficient in all cases. For matrices whose fields of values are a circular disk centered at the origin, we show that the cost of Uhlig's method blows up with respect to the desired relative accuracy. More generally, we also analyze the local behavior of Uhlig's cutting procedure at outermost points in the field of values, showing that it often has a fast Q-linear rate of convergence and is Q-superlinear at corners. Finally, we identify and address inefficiencies in both the level-set and cutting-plane approaches and propose refined versions of these techniques.

Analyzing time series in the frequency domain enables the development of powerful tools for investigating the second-order characteristics of multivariate stochastic processes. Parameters like the spectral density matrix and its inverse, the coherence or the partial coherence, encode comprehensively the complex linear relations between the component processes of the multivariate system. In this paper, we develop inference procedures for such parameters in a high-dimensional, time series setup. In particular, we first focus on the derivation of consistent estimators of the coherence and, more importantly, of the partial coherence which possess manageable limiting distributions that are suitable for testing purposes. Statistical tests of the hypothesis that the maximum over frequencies of the coherence, respectively, of the partial coherence, do not exceed a prespecified threshold value are developed. Our approach allows for testing hypotheses for individual coherences and/or partial coherences as well as for multiple testing of large sets of such parameters. In the latter case, a consistent procedure to control the false discovery rate is developed. The finite sample performance of the inference procedures proposed is investigated by means of simulations and applications to the construction of graphical interaction models for brain connectivity based on EEG data are presented.

A robot needs multiple interaction modes to robustly collaborate with a human in complicated industrial tasks. We develop a Coexistence-and-Cooperation (CoCo) human-robot collaboration system. Coexistence mode enables the robot to work with the human on different sub-tasks independently in a shared space. Cooperation mode enables the robot to follow human guidance and recover failures. A human intention tracking algorithm takes in both human and robot motion measurements as input and provides a switch on the interaction modes. We demonstrate the effectiveness of CoCo system in a use case analogous to a real world multi-step assembly task.

An evolving surface finite element discretisation is analysed for the evolution of a closed two-dimensional surface governed by a system coupling a generalised forced mean curvature flow and a reaction--diffusion process on the surface, inspired by a gradient flow of a coupled energy. Two algorithms are proposed, both based on a system coupling the diffusion equation to evolution equations for geometric quantities in the velocity law for the surface. One of the numerical methods is proved to be convergent in the $H^1$ norm with optimal-order for finite elements of degree at least two. We present numerical experiments illustrating the convergence behaviour and demonstrating the qualitative properties of the flow: preservation of mean convexity, loss of convexity, weak maximum principles, and the occurrence of self-intersections.

Markov decision processes (MDP) and continuous-time MDP (CTMDP) are the fundamental models for non-deterministic systems with probabilistic uncertainty. Mean payoff (a.k.a. long-run average reward) is one of the most classic objectives considered in their context. We provide the first algorithm to compute mean payoff probably approximately correctly in unknown MDP; further, we extend it to unknown CTMDP. We do not require any knowledge of the state space, only a lower bound on the minimum transition probability, which has been advocated in literature. In addition to providing probably approximately correct (PAC) bounds for our algorithm, we also demonstrate its practical nature by running experiments on standard benchmarks.

Low-rank approximation of images via singular value decomposition is well-received in the era of big data. However, singular value decomposition (SVD) is only for order-two data, i.e., matrices. It is necessary to flatten a higher order input into a matrix or break it into a series of order-two slices to tackle higher order data such as multispectral images and videos with the SVD. Higher order singular value decomposition (HOSVD) extends the SVD and can approximate higher order data using sums of a few rank-one components. We consider the problem of generalizing HOSVD over a finite dimensional commutative algebra. This algebra, referred to as a t-algebra, generalizes the field of complex numbers. The elements of the algebra, called t-scalars, are fix-sized arrays of complex numbers. One can generalize matrices and tensors over t-scalars and then extend many canonical matrix and tensor algorithms, including HOSVD, to obtain higher-performance versions. The generalization of HOSVD is called THOSVD. Its performance of approximating multi-way data can be further improved by an alternating algorithm. THOSVD also unifies a wide range of principal component analysis algorithms. To exploit the potential of generalized algorithms using t-scalars for approximating images, we use a pixel neighborhood strategy to convert each pixel to "deeper-order" t-scalar. Experiments on publicly available images show that the generalized algorithm over t-scalars, namely THOSVD, compares favorably with its canonical counterparts.

This paper introduces two methods of creating differentially private (DP) synthetic data that are now incorporated into the \textit{synthpop} package for \textbf{R}. Both are suitable for synthesising categorical data, or numeric data grouped into categories. Ten data sets with varying characteristics were used to evaluate the methods. Measures of disclosiveness and of utility were defined and calculated The first method is to add DP noise to a cross tabulation of all the variables and create synthetic data by a multinomial sample from the resulting probabilities. While this method certainly reduced disclosure risk, it did not provide synthetic data of adequate quality for any of the data sets. The other method is to create a set of noisy marginal distributions that are made to agree with each other with an iterative proportional fitting algorithm and then to use the fitted probabilities as above. This proved to provide useable synthetic data for most of these data sets at values of the differentially privacy parameter $\epsilon$ as low as 0.5. The relationship between the disclosure risk and $\epsilon$ is illustrated for each of the data sets. Results show how the trade-off between disclosiveness and data utility depend on the characteristics of the data sets.

北京阿比特科技有限公司