亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The elliptic curve discrete logarithm problem is of fundamental importance in public-key cryptography. It is in use for a long time. Moreover, it is an interesting challenge in computational mathematics. Its solution is supposed to provide interesting research directions. In this paper, we explore ways to solve the elliptic curve discrete logarithm problem. Our results are mostly computational. However, it seems, the methods that we develop and directions that we pursue can provide a potent attack on this problem. This work follows our earlier work, where we tried to solve this problem by finding a zero minor in a matrix over the same finite field on which the elliptic curve is defined. This paper is self-contained.

相關內容

We consider the task of estimating functions belonging to a specific class of nonsmooth functions, namely so-called tame functions. These functions appear in a wide range of applications: training deep learning, value functions of mixed-integer programs, or wave functions of small molecules. We show that tame functions are approximable by piecewise polynomials on any full-dimensional cube. We then present the first ever mixed-integer programming formulation of piecewise polynomial regression. Together, these can be used to estimate tame functions. We demonstrate promising computational results.

Miura surfaces are the solutions of a constrained nonlinear elliptic system of equations. This system is derived by homogenization from the Miura fold, which is a type of origami fold with multiple applications in engineering. A previous inquiry, gave suboptimal conditions for existence of solutions and proposed an $H^2$-conformal finite element method to approximate them. In this paper, the existence of Miura surfaces is studied using a mixed formulation. It is also proved that the constraints propagate from the boundary to the interior of the domain for well-chosen boundary conditions. Then, a numerical method based on a least-squares formulation, Taylor--Hood finite elements and a Newton method is introduced to approximate Miura surfaces. The numerical method is proved to converge and numerical tests are performed to demonstrate its robustness.

In relational verification, judicious alignment of computational steps facilitates proof of relations between programs using simple relational assertions. Relational Hoare logics (RHL) provide compositional rules that embody various alignments of executions. Seemingly more flexible alignments can be expressed in terms of product automata based on program transition relations. A single degenerate alignment rule (self-composition), atop a complete Hoare logic, comprises a RHL for $\forall\forall$ properties that is complete in the ordinary logical sense. The notion of alignment completeness was previously proposed as a more satisfactory measure, and some rules were shown to be alignment complete with respect to a few ad hoc forms of alignment automata. This paper proves alignment completeness with respect to a general class of $\forall\forall$ alignment automata, for a RHL comprised of standard rules together with a rule of semantics-preserving rewrites based on Kleene algebra with tests. A new logic for $\forall\exists$ properties is introduced and shown to be alignment complete. The $\forall\forall$ and $\forall\exists$ automata are shown to be semantically complete. Thus the logics are both complete in the ordinary sense.

High-dimensional Partial Differential Equations (PDEs) are a popular mathematical modelling tool, with applications ranging from finance to computational chemistry. However, standard numerical techniques for solving these PDEs are typically affected by the curse of dimensionality. In this work, we tackle this challenge while focusing on stationary diffusion equations defined over a high-dimensional domain with periodic boundary conditions. Inspired by recent progress in sparse function approximation in high dimensions, we propose a new method called compressive Fourier collocation. Combining ideas from compressive sensing and spectral collocation, our method replaces the use of structured collocation grids with Monte Carlo sampling and employs sparse recovery techniques, such as orthogonal matching pursuit and $\ell^1$ minimization, to approximate the Fourier coefficients of the PDE solution. We conduct a rigorous theoretical analysis showing that the approximation error of the proposed method is comparable with the best $s$-term approximation (with respect to the Fourier basis) to the solution. Using the recently introduced framework of random sampling in bounded Riesz systems, our analysis shows that the compressive Fourier collocation method mitigates the curse of dimensionality with respect to the number of collocation points under sufficient conditions on the regularity of the diffusion coefficient. We also present numerical experiments that illustrate the accuracy and stability of the method for the approximation of sparse and compressible solutions.

Quantum computing has shown tremendous promise in addressing complex computational problems, yet its practical realization is hindered by the limited availability of qubits for computation. Recent advancements in quantum hardware have introduced mid-circuit measurements and resets, enabling the reuse of measured qubits and significantly reducing the qubit requirements for executing quantum algorithms. In this work, we present a systematic study of dynamic quantum circuit compilation, a process that transforms static quantum circuits into their dynamic equivalents with a reduced qubit count through qubit-reuse. We establish the first general framework for optimizing the dynamic circuit compilation via graph manipulation. In particular, we completely characterize the optimal quantum circuit compilation using binary integer programming, provide efficient algorithms for determining whether a given quantum circuit can be reduced to a smaller circuit and present heuristic algorithms for devising dynamic compilation schemes in general. Furthermore, we conduct a thorough analysis of quantum circuits with practical relevance, offering optimal compilations for well-known quantum algorithms in quantum computation, ansatz circuits utilized in quantum machine learning, and measurement-based quantum computation crucial for quantum networking. We also perform a comparative analysis against state-of-the-art approaches, demonstrating the superior performance of our methods in both structured and random quantum circuits. Our framework lays a rigorous foundation for comprehending dynamic quantum circuit compilation via qubit-reuse, bridging the gap between theoretical quantum algorithms and their physical implementation on quantum computers with limited resources.

We propose a topological mapping and localization system able to operate on real human colonoscopies, despite significant shape and illumination changes. The map is a graph where each node codes a colon location by a set of real images, while edges represent traversability between nodes. For close-in-time images, where scene changes are minor, place recognition can be successfully managed with the recent transformers-based local feature matching algorithms. However, under long-term changes -- such as different colonoscopies of the same patient -- feature-based matching fails. To address this, we train on real colonoscopies a deep global descriptor achieving high recall with significant changes in the scene. The addition of a Bayesian filter boosts the accuracy of long-term place recognition, enabling relocalization in a previously built map. Our experiments show that ColonMapper is able to autonomously build a map and localize against it in two important use cases: localization within the same colonoscopy or within different colonoscopies of the same patient. Code will be available upon acceptance.

Maximal regularity is a kind of a priori estimates for parabolic-type equations and it plays an important role in the theory of nonlinear differential equations. The aim of this paper is to investigate the temporally discrete counterpart of maximal regularity for the discontinuous Galerkin (DG) time-stepping method. We will establish such an estimate without logarithmic factor over a quasi-uniform temporal mesh. To show the main result, we introduce the temporally regularized Green's function and then reduce the discrete maximal regularity to a weighted error estimate for its DG approximation. Our results would be useful for investigation of DG approximation of nonlinear parabolic problems.

We propose data thinning, an approach for splitting an observation into two or more independent parts that sum to the original observation, and that follow the same distribution as the original observation, up to a (known) scaling of a parameter. This very general proposal is applicable to any convolution-closed distribution, a class that includes the Gaussian, Poisson, negative binomial, gamma, and binomial distributions, among others. Data thinning has a number of applications to model selection, evaluation, and inference. For instance, cross-validation via data thinning provides an attractive alternative to the usual approach of cross-validation via sample splitting, especially in settings in which the latter is not applicable. In simulations and in an application to single-cell RNA-sequencing data, we show that data thinning can be used to validate the results of unsupervised learning approaches, such as k-means clustering and principal components analysis, for which traditional sample splitting is unattractive or unavailable.

Block matrix structure is commonly arising is various physics and engineering applications. There are various advantages in preserving the blocks structure while computing the inversion of such partitioned matrices. In this context, using the blockwise matrix inversion technique, inversions of large matrices with different ways of memory handling are presented, in this article. An algorithm for performing inversion of a matrix which is partitioned into a large number of blocks is presented, in which inversions and multiplications involving the blocks are carried out with parallel processing. Optimized memory handling and efficient methods for intermediate multiplications among the partitioned blocks are implemented in this algorithm. The developed programs for the procedures discussed in this article are provided in C language and the parallel processing methodology is implemented using OpenMP application programming interface. The performance and the advantages of the developed algorithms are highlighted.

The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.

北京阿比特科技有限公司