亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Internet of Things (IoT) technology uses small and cost-effective sensors for various applications, such as Industrial IoT. However, these sensor nodes are powered by fixed-size batteries, which creates a trade-off between network performance and long-term sustainability. Moreover, some applications require the network to provide a certain level of service, such as a lower delay for critical data, while ensuring the operational reliability of sensor nodes. To address this energy challenge, external energy harvesting sources, such as solar and wind, offer promising and eco-friendly solutions. However, the available energy from a single energy source is insufficient to meet these requirements. This drives the utilization of a hybrid energy harvesting approach, such as the integration of solar and wind energy harvesters, to increase the amount of harvested energy. Nevertheless, to fully utilize the available energy, which is dynamic in nature, the sensor node must adapt its operation to ensure sustainable operation and enhanced network performance. Therefore, this paper proposes a hybrid energy harvesting-based energy neutral operation (ENO) medium access control (MAC) protocol, called HENO-MAC, that allows the receiver node to harvest energy from the solar-wind harvesters and adapt its duty cycle accordingly. The performance of the proposed HENO-MAC was evaluated using the latest realistic solar and wind data for two consecutive days in GreenCastalia. The simulation results demonstrate that the duty cycle mechanism of HENO-MAC effectively utilizes the harvested energy to achieve ENO and uses the available energy resources efficiently to reduce the packet delay for all packets and the highest priority packet by up to 28.5% and 27.3%, respectively, when compared with other existing MAC protocols.

相關內容

Medical image segmentation is increasingly reliant on deep learning techniques, yet the promising performance often come with high annotation costs. This paper introduces Weak-Mamba-UNet, an innovative weakly-supervised learning (WSL) framework that leverages the capabilities of Convolutional Neural Network (CNN), Vision Transformer (ViT), and the cutting-edge Visual Mamba (VMamba) architecture for medical image segmentation, especially when dealing with scribble-based annotations. The proposed WSL strategy incorporates three distinct architecture but same symmetrical encoder-decoder networks: a CNN-based UNet for detailed local feature extraction, a Swin Transformer-based SwinUNet for comprehensive global context understanding, and a VMamba-based Mamba-UNet for efficient long-range dependency modeling. The key concept of this framework is a collaborative and cross-supervisory mechanism that employs pseudo labels to facilitate iterative learning and refinement across the networks. The effectiveness of Weak-Mamba-UNet is validated on a publicly available MRI cardiac segmentation dataset with processed scribble annotations, where it surpasses the performance of a similar WSL framework utilizing only UNet or SwinUNet. This highlights its potential in scenarios with sparse or imprecise annotations. The source code is made publicly accessible.

Click-through rate (CTR) Prediction is a crucial task in personalized information retrievals, such as industrial recommender systems, online advertising, and web search. Most existing CTR Prediction models utilize explicit feature interactions to overcome the performance bottleneck of implicit feature interactions. Hence, deep CTR models based on parallel structures (e.g., DCN, FinalMLP, xDeepFM) have been proposed to obtain joint information from different semantic spaces. However, these parallel subcomponents lack effective supervisory signals, making it challenging to efficiently capture valuable multi-views feature interaction information in different semantic spaces. To address this issue, we propose a simple yet effective novel CTR model: Contrast-enhanced Through Network for CTR (CETN), so as to ensure the diversity and homogeneity of feature interaction information. Specifically, CETN employs product-based feature interactions and the augmentation (perturbation) concept from contrastive learning to segment different semantic spaces, each with distinct activation functions. This improves diversity in the feature interaction information captured by the model. Additionally, we introduce self-supervised signals and through connection within each semantic space to ensure the homogeneity of the captured feature interaction information. The experiments and research conducted on four real datasets demonstrate that our model consistently outperforms twenty baseline models in terms of AUC and Logloss.

Semi-Supervised Learning (SSL) aims to learn a model using a tiny labeled set and massive amounts of unlabeled data. To better exploit the unlabeled data the latest SSL methods use pseudo-labels predicted from a single discriminative classifier. However, the generated pseudo-labels are inevitably linked to inherent confirmation bias and noise which greatly affects the model performance. In this work we introduce a new framework for SSL named NorMatch. Firstly, we introduce a new uncertainty estimation scheme based on normalizing flows, as an auxiliary classifier, to enforce highly certain pseudo-labels yielding a boost of the discriminative classifiers. Secondly, we introduce a threshold-free sample weighting strategy to exploit better both high and low confidence pseudo-labels. Furthermore, we utilize normalizing flows to model, in an unsupervised fashion, the distribution of unlabeled data. This modelling assumption can further improve the performance of generative classifiers via unlabeled data, and thus, implicitly contributing to training a better discriminative classifier. We demonstrate, through numerical and visual results, that NorMatch achieves state-of-the-art performance on several datasets.

Advancements in deep learning-based 3D object detection necessitate the availability of large-scale datasets. However, this requirement introduces the challenge of manual annotation, which is often both burdensome and time-consuming. To tackle this issue, the literature has seen the emergence of several weakly supervised frameworks for 3D object detection which can automatically generate pseudo labels for unlabeled data. Nevertheless, these generated pseudo labels contain noise and are not as accurate as those labeled by humans. In this paper, we present the first approach that addresses the inherent ambiguities present in pseudo labels by introducing an Evidential Deep Learning (EDL) based uncertainty estimation framework. Specifically, we propose MEDL-U, an EDL framework based on MTrans, which not only generates pseudo labels but also quantifies the associated uncertainties. However, applying EDL to 3D object detection presents three primary challenges: (1) relatively lower pseudolabel quality in comparison to other autolabelers; (2) excessively high evidential uncertainty estimates; and (3) lack of clear interpretability and effective utilization of uncertainties for downstream tasks. We tackle these issues through the introduction of an uncertainty-aware IoU-based loss, an evidence-aware multi-task loss function, and the implementation of a post-processing stage for uncertainty refinement. Our experimental results demonstrate that probabilistic detectors trained using the outputs of MEDL-U surpass deterministic detectors trained using outputs from previous 3D annotators on the KITTI val set for all difficulty levels. Moreover, MEDL-U achieves state-of-the-art results on the KITTI official test set compared to existing 3D automatic annotators.

Deep learning methods have shown strong performance in solving tasks for historical document image analysis. However, despite current libraries and frameworks, programming an experiment or a set of experiments and executing them can be time-consuming. This is why we propose an open-source deep learning framework, DIVA-DAF, which is based on PyTorch Lightning and specifically designed for historical document analysis. Pre-implemented tasks such as segmentation and classification can be easily used or customized. It is also easy to create one's own tasks with the benefit of powerful modules for loading data, even large data sets, and different forms of ground truth. The applications conducted have demonstrated time savings for the programming of a document analysis task, as well as for different scenarios such as pre-training or changing the architecture. Thanks to its data module, the framework also allows to reduce the time of model training significantly.

The rapid development in the field of Large Language Models (LLMs) has led to a surge in applications that facilitate collaboration among multiple agents to assist humans in their daily tasks. However, a significant gap remains in assessing whether LLM-powered applications genuinely enhance user experience and task execution efficiency. This highlights the pressing need for methods to verify utility of LLM-powered applications, particularly by ensuring alignment between the application's functionality and end-user needs. We introduce AgentEval provides an implementation for the math problems}, a novel framework designed to simplify the utility verification process by automatically proposing a set of criteria tailored to the unique purpose of any given application. This allows for a comprehensive assessment, quantifying the utility of an application against the suggested criteria. We present a comprehensive analysis of the robustness of quantifier's work.

Remote Attestation (RA) enables the integrity and authenticity of applications in Trusted Execution Environment (TEE) to be verified. Existing TEE RA designs employ a centralized trust model where they rely on a single provisioned secret key and a centralized verifier to establish trust for remote parties. This model is however brittle and can be untrusted under advanced attacks nowadays. Besides, most designs only provide fixed functionalities once deployed, making them hard to adapt to different needs on availability, Quality of Service (QoS), etc. Therefore, we propose JANUS, an open and resilient TEE RA scheme. To decentralize trust, we, on one hand, introduce Physically Unclonable Function (PUF) as an intrinsic root of trust (RoT) in TEE to provide additional measurements and cryptographic enhancements. On the other hand, we use blockchain and smart contract to realize decentralized verification and result audit. Furthermore, we design an automated turnout mechanism that allows JANUS to remain resilient and offer flexible RA services under various situations. We provide a UC-based security proof and demonstrate the scalability and generality of JANUS by implementing an open-sourced prototype.

We propose and analyze an adaptive adversary that can retrain a Trojaned DNN and is also aware of SOTA output-based Trojaned model detectors. We show that such an adversary can ensure (1) high accuracy on both trigger-embedded and clean samples and (2) bypass detection. Our approach is based on an observation that the high dimensionality of the DNN parameters provides sufficient degrees of freedom to simultaneously achieve these objectives. We also enable SOTA detectors to be adaptive by allowing retraining to recalibrate their parameters, thus modeling a co-evolution of parameters of a Trojaned model and detectors. We then show that this co-evolution can be modeled as an iterative game, and prove that the resulting (optimal) solution of this interactive game leads to the adversary successfully achieving the above objectives. In addition, we provide a greedy algorithm for the adversary to select a minimum number of input samples for embedding triggers. We show that for cross-entropy or log-likelihood loss functions used by the DNNs, the greedy algorithm provides provable guarantees on the needed number of trigger-embedded input samples. Extensive experiments on four diverse datasets -- MNIST, CIFAR-10, CIFAR-100, and SpeechCommand -- reveal that the adversary effectively evades four SOTA output-based Trojaned model detectors: MNTD, NeuralCleanse, STRIP, and TABOR.

Recently, Self-Supervised Representation Learning (SSRL) has attracted much attention in the field of computer vision, speech, natural language processing (NLP), and recently, with other types of modalities, including time series from sensors. The popularity of self-supervised learning is driven by the fact that traditional models typically require a huge amount of well-annotated data for training. Acquiring annotated data can be a difficult and costly process. Self-supervised methods have been introduced to improve the efficiency of training data through discriminative pre-training of models using supervisory signals that have been freely obtained from the raw data. Unlike existing reviews of SSRL that have pre-dominately focused upon methods in the fields of CV or NLP for a single modality, we aim to provide the first comprehensive review of multimodal self-supervised learning methods for temporal data. To this end, we 1) provide a comprehensive categorization of existing SSRL methods, 2) introduce a generic pipeline by defining the key components of a SSRL framework, 3) compare existing models in terms of their objective function, network architecture and potential applications, and 4) review existing multimodal techniques in each category and various modalities. Finally, we present existing weaknesses and future opportunities. We believe our work develops a perspective on the requirements of SSRL in domains that utilise multimodal and/or temporal data

Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.

北京阿比特科技有限公司