亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The first artificial quantum neuron models followed a similar path to classic models, as they work only with discrete values. Here we introduce an algorithm that generalizes the binary model manipulating the phase of complex numbers. We propose, test, and implement a neuron model that works with continuous values in a quantum computer. Through simulations, we demonstrate that our model may work in a hybrid training scheme utilizing gradient descent as a learning algorithm. This work represents another step in the direction of evaluation of the use of artificial neural networks efficiently implemented on near-term quantum devices.

相關內容

Biological neural networks seem qualitatively superior (e.g. in learning, flexibility, robustness) to current artificial like Multi-Layer Perceptron (MLP) or Kolmogorov-Arnold Network (KAN). Simultaneously, in contrast to them: biological have fundamentally multidirectional signal propagation \cite{axon}, also of probability distributions e.g. for uncertainty estimation, and are believed not being able to use standard backpropagation training \cite{backprop}. There are proposed novel artificial neurons based on HCR (Hierarchical Correlation Reconstruction) allowing to remove the above low level differences: with neurons containing local joint distribution model (of its connections), representing joint density on normalized variables as just linear combination of $(f_\mathbf{j})$ orthonormal polynomials: $\rho(\mathbf{x})=\sum_{\mathbf{j}\in B} a_\mathbf{j} f_\mathbf{j}(\mathbf{x})$ for $\mathbf{x} \in [0,1]^d$ and $B\subset \mathbb{N}^d$ some chosen basis. By various index summations of such $(a_\mathbf{j})_{\mathbf{j}\in B}$ tensor as neuron parameters, we get simple formulas for e.g. conditional expected values for propagation in any direction, like $E[x|y,z]$, $E[y|x]$, which degenerate to KAN-like parametrization if restricting to pairwise dependencies. Such HCR network can also propagate probability distributions (also joint) like $\rho(y,z|x)$. It also allows for additional training approaches, like direct $(a_\mathbf{j})$ estimation, through tensor decomposition, or more biologically plausible information bottleneck training: layers directly influencing only neighbors, optimizing content to maximize information about the next layer, and minimizing about the previous to remove noise, extract crucial information.

The need for statistical models of orientations arises in many applications in engineering and computer science. Orientational data appear as sets of angles, unit vectors, rotation matrices or quaternions. In the field of directional statistics, a lot of advances have been made in modelling such types of data. However, only a few of these tools are used in engineering and computer science applications. Hence, this paper aims to serve as a cheat sheet for those probability distributions of orientations. Models for 1-DOF, 2-DOF and 3-DOF orientations are discussed. For each of them, expressions for the density function, fitting to data, and sampling are presented. The paper is written with a compromise between engineering and statistics in terms of notation and terminology. A Python library with functions for some of these models is provided. Using this library, two examples of applications to real data are presented.

Two sequential estimators are proposed for the odds p/(1-p) and log odds log(p/(1-p)) respectively, using independent Bernoulli random variables with parameter p as inputs. The estimators are unbiased, and guarantee that the variance of the estimation error divided by the true value of the odds, or the variance of the estimation error of the log odds, are less than a target value for any p in (0,1). The estimators are close to optimal in the sense of Wolfowitz's bound.

We consider the discretization of a class of nonlinear parabolic equations by discontinuous Galerkin time-stepping methods and establish a priori as well as conditional a posteriori error estimates. Our approach is motivated by the error analysis in [9] for Runge-Kutta methods for nonlinear parabolic equations; in analogy to [9], the proofs are based on maximal regularity properties of discontinuous Galerkin methods for non-autonomous linear parabolic equations.

This manuscript describes the notions of blocker and interdiction applied to well-known optimization problems. The main interest of these two concepts is the capability to analyze the existence of a combinatorial structure after some modifications. We focus on graph modification, like removing vertices or links in a network. In the interdiction version, we have a budget for modification to reduce as much as possible the size of a given combinatorial structure. Whereas, for the blocker version, we minimize the number of modifications such that the network does not contain a given combinatorial structure. Blocker and interdiction problems have some similarities and can be applied to well-known optimization problems. We consider matching, connectivity, shortest path, max flow, and clique problems. For these problems, we analyze either the blocker version or the interdiction one. Applying the concept of blocker or interdiction to well-known optimization problems can change their complexities. Some optimization problems become harder when one of these two notions is applied. For this reason, we propose some complexity analysis to show when an optimization problem, or the associated decision problem, becomes harder. Another fundamental aspect developed in the manuscript is the use of exact methods to tackle these optimization problems. The main way to solve these problems is to use integer linear programming to model them. An interesting aspect of integer linear programming is the possibility to analyze theoretically the strength of these models, using cutting planes. For most of the problems studied in this manuscript, a polyhedral analysis is performed to prove the strength of inequalities or describe new families of inequalities. The exact algorithms proposed are based on Branch-and-Cut or Branch-and-Price algorithm, where dedicated separation and pricing algorithms are proposed.

We present a novel computational framework to assess the structural integrity of welds. In the first stage of the simulation framework, local fractions of microstructural constituents within weld regions are predicted based on steel composition and welding parameters. The resulting phase fraction maps are used to define heterogeneous properties that are subsequently employed in structural integrity assessments using an elastoplastic phase field fracture model. The framework is particularised to predicting failure in hydrogen pipelines, demonstrating its potential to assess the feasibility of repurposing existing pipeline infrastructure to transport hydrogen. First, the process model is validated against experimental microhardness maps for vintage and modern pipeline welds. Additionally, the influence of welding conditions on hardness and residual stresses is investigated, demonstrating that variations in heat input, filler material composition, and weld bead order can significantly affect the properties within the weld region. Coupled hydrogen diffusion-fracture simulations are then conducted to determine the critical pressure at which hydrogen transport pipelines will fail. To this end, the model is enriched with a microstructure-sensitive description of hydrogen transport and hydrogen-dependent fracture resistance. The analysis of an X52 pipeline reveals that even 2 mm defects in a hard heat-affected zone can drastically reduce the critical failure pressure.

This paper introduces a new pseudodifferential preconditioner for the Helmholtz equation in variable media with absorption. The pseudodifferential operator is associated with the multiplicative inverse to the symbol of the Helmholtz operator. This approach is well-suited for the intermediate and high-frequency regimes. The main novel idea for the fast evaluation of the preconditioner is to interpolate its symbol, not as a function of the (high-dimensional) phase-space variables, but as a function of the wave speed itself. Since the wave speed is a real-valued function, this approach allows us to interpolate in a univariate setting even when the original problem is posed in a multidimensional physical space. As a result, the needed number of interpolation points is small, and the interpolation coefficients can be computed using the fast Fourier transform. The overall computational complexity is log-linear with respect to the degrees of freedom as inherited from the fast Fourier transform. We present some numerical experiments to illustrate the effectiveness of the preconditioner to solve the discrete Helmholtz equation using the GMRES iterative method. The implementation of an absorbing layer for scattering problems using a complex-valued wave speed is also developed. Limitations and possible extensions are also discussed.

This work presents a hybrid quantum-classical algorithm to perform clustering aggregation, designed for neutral-atoms quantum computers and quantum annealers. Clustering aggregation is a technique that mitigates the weaknesses of clustering algorithms, an important class of data science methods for partitioning datasets, and is widely employed in many real-world applications. By expressing the clustering aggregation problem instances as a Maximum Independent Set (MIS) problem and as a Quadratic Unconstrained Binary Optimization (QUBO) problem, it was possible to solve them by leveraging the potential of Pasqal's Fresnel (neutral-atoms processor) and D-Wave's Advantage QPU (quantum annealer). Additionally, the designed clustering aggregation algorithm was first validated on a Fresnel emulator based on QuTiP and later on an emulator of the same machine based on tensor networks, provided by Pasqal. The results revealed technical limitations, such as the difficulty of adding additional constraints on the employed neutral-atoms platform and the need for better metrics to measure the quality of the produced clusterings. However, this work represents a step towards a benchmark to compare two different machines: a quantum annealer and a neutral-atom quantum computer. Moreover, findings suggest promising potential for future advancements in hybrid quantum-classical pipelines, although further improvements are needed in both quantum and classical components.

Vehicle models have a long history of research and as of today are able to model the involved physics in a reasonable manner. However, each new vehicle has its new characteristics or parameters. The identification of these is the main task of an engineer. To validate whether the correct parameter set has been chosen is a tedious task and often can only be performed by experts. Metrics known commonly used in literature are able to compare different results under certain aspects. However, they fail to answer the question: Are the models accurate enough? In this article, we propose the usage of a custom metric trained on the knowledge of experts to tackle this problem. Our approach involves three main steps: first, the formalized collection of subject matter experts' opinion on the question: Having seen the measurement and simulation time series in comparison, is the model quality sufficient? From this step, we obtain a data set that is able to quantify the sufficiency of a simulation result based on a comparison to corresponding experimental data. In a second step, we compute common model metrics on the measurement and simulation time series and use these model metrics as features to a regression model. Third, we fit a regression model to the experts' opinions. This regression model, i.e., our custom metric, can than predict the sufficiency of a new simulation result and gives a confidence on this prediction.

This paper concerns the mathematical analyses of the diffusion model in machine learning. The drift term of the backward sampling process is represented as a conditional expectation involving the data distribution and the forward diffusion. The training process aims to find such a drift function by minimizing the mean-squared residue related to the conditional expectation. Using small-time approximations of the Green's function of the forward diffusion, we show that the analytical mean drift function in DDPM and the score function in SGM asymptotically blow up in the final stages of the sampling process for singular data distributions such as those concentrated on lower-dimensional manifolds, and are therefore difficult to approximate by a network. To overcome this difficulty, we derive a new target function and associated loss, which remains bounded even for singular data distributions. We validate the theoretical findings with several numerical examples.

北京阿比特科技有限公司