Temporal action proposal generation is an important and challenging task in video understanding, which aims at detecting all temporal segments containing action instances of interest. The existing proposal generation approaches are generally based on pre-defined anchor windows or heuristic bottom-up boundary matching strategies. This paper presents a simple and efficient framework (RTD-Net) for direct action proposal generation, by re-purposing a Transformer-alike architecture. To tackle the essential visual difference between time and space, we make three important improvements over the original transformer detection framework (DETR). First, to deal with slowness prior in videos, we replace the original Transformer encoder with a boundary attentive module to better capture long-range temporal information. Second, due to the ambiguous temporal boundary and relatively sparse annotations, we present a relaxed matching scheme to relieve the strict criteria of single assignment to each groundtruth. Finally, we devise a three-branch head to further improve the proposal confidence estimation by explicitly predicting its completeness. Extensive experiments on THUMOS14 and ActivityNet-1.3 benchmarks demonstrate the effectiveness of RTD-Net, on both tasks of temporal action proposal generation and temporal action detection. Moreover, due to its simplicity in design, our framework is more efficient than previous proposal generation methods, without non-maximum suppression post-processing. The code and models are made available at //github.com/MCG-NJU/RTD-Action.
Most recent approaches for online action detection tend to apply Recurrent Neural Network (RNN) to capture long-range temporal structure. However, RNN suffers from non-parallelism and gradient vanishing, hence it is hard to be optimized. In this paper, we propose a new encoder-decoder framework based on Transformers, named OadTR, to tackle these problems. The encoder attached with a task token aims to capture the relationships and global interactions between historical observations. The decoder extracts auxiliary information by aggregating anticipated future clip representations. Therefore, OadTR can recognize current actions by encoding historical information and predicting future context simultaneously. We extensively evaluate the proposed OadTR on three challenging datasets: HDD, TVSeries, and THUMOS14. The experimental results show that OadTR achieves higher training and inference speeds than current RNN based approaches, and significantly outperforms the state-of-the-art methods in terms of both mAP and mcAP. Code is available at //github.com/wangxiang1230/OadTR.
Temporal action proposal generation aims to estimate temporal intervals of actions in untrimmed videos, which is a challenging yet important task in the video understanding field. The proposals generated by current methods still suffer from inaccurate temporal boundaries and inferior confidence used for retrieval owing to the lack of efficient temporal modeling and effective boundary context utilization. In this paper, we propose Temporal Context Aggregation Network (TCANet) to generate high-quality action proposals through "local and global" temporal context aggregation and complementary as well as progressive boundary refinement. Specifically, we first design a Local-Global Temporal Encoder (LGTE), which adopts the channel grouping strategy to efficiently encode both "local and global" temporal inter-dependencies. Furthermore, both the boundary and internal context of proposals are adopted for frame-level and segment-level boundary regressions, respectively. Temporal Boundary Regressor (TBR) is designed to combine these two regression granularities in an end-to-end fashion, which achieves the precise boundaries and reliable confidence of proposals through progressive refinement. Extensive experiments are conducted on three challenging datasets: HACS, ActivityNet-v1.3, and THUMOS-14, where TCANet can generate proposals with high precision and recall. By combining with the existing action classifier, TCANet can obtain remarkable temporal action detection performance compared with other methods. Not surprisingly, the proposed TCANet won the 1$^{st}$ place in the CVPR 2020 - HACS challenge leaderboard on temporal action localization task.
Video instance segmentation (VIS) is the task that requires simultaneously classifying, segmenting and tracking object instances of interest in video. Recent methods typically develop sophisticated pipelines to tackle this task. Here, we propose a new video instance segmentation framework built upon Transformers, termed VisTR, which views the VIS task as a direct end-to-end parallel sequence decoding/prediction problem. Given a video clip consisting of multiple image frames as input, VisTR outputs the sequence of masks for each instance in the video in order directly. At the core is a new, effective instance sequence matching and segmentation strategy, which supervises and segments instances at the sequence level as a whole. VisTR frames the instance segmentation and tracking in the same perspective of similarity learning, thus considerably simplifying the overall pipeline and is significantly different from existing approaches. Without bells and whistles, VisTR achieves the highest speed among all existing VIS models, and achieves the best result among methods using single model on the YouTube-VIS dataset. For the first time, we demonstrate a much simpler and faster video instance segmentation framework built upon Transformers, achieving competitive accuracy. We hope that VisTR can motivate future research for more video understanding tasks.
In video object tracking, there exist rich temporal contexts among successive frames, which have been largely overlooked in existing trackers. In this work, we bridge the individual video frames and explore the temporal contexts across them via a transformer architecture for robust object tracking. Different from classic usage of the transformer in natural language processing tasks, we separate its encoder and decoder into two parallel branches and carefully design them within the Siamese-like tracking pipelines. The transformer encoder promotes the target templates via attention-based feature reinforcement, which benefits the high-quality tracking model generation. The transformer decoder propagates the tracking cues from previous templates to the current frame, which facilitates the object searching process. Our transformer-assisted tracking framework is neat and trained in an end-to-end manner. With the proposed transformer, a simple Siamese matching approach is able to outperform the current top-performing trackers. By combining our transformer with the recent discriminative tracking pipeline, our method sets several new state-of-the-art records on prevalent tracking benchmarks.
To generate "accurate" scene graphs, almost all existing methods predict pairwise relationships in a deterministic manner. However, we argue that visual relationships are often semantically ambiguous. Specifically, inspired by linguistic knowledge, we classify the ambiguity into three types: Synonymy Ambiguity, Hyponymy Ambiguity, and Multi-view Ambiguity. The ambiguity naturally leads to the issue of \emph{implicit multi-label}, motivating the need for diverse predictions. In this work, we propose a novel plug-and-play Probabilistic Uncertainty Modeling (PUM) module. It models each union region as a Gaussian distribution, whose variance measures the uncertainty of the corresponding visual content. Compared to the conventional deterministic methods, such uncertainty modeling brings stochasticity of feature representation, which naturally enables diverse predictions. As a byproduct, PUM also manages to cover more fine-grained relationships and thus alleviates the issue of bias towards frequent relationships. Extensive experiments on the large-scale Visual Genome benchmark show that combining PUM with newly proposed ResCAGCN can achieve state-of-the-art performances, especially under the mean recall metric. Furthermore, we prove the universal effectiveness of PUM by plugging it into some existing models and provide insightful analysis of its ability to generate diverse yet plausible visual relationships.
Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.
It is well believed that video captioning is a fundamental but challenging task in both computer vision and artificial intelligence fields. The prevalent approach is to map an input video to a variable-length output sentence in a sequence to sequence manner via Recurrent Neural Network (RNN). Nevertheless, the training of RNN still suffers to some degree from vanishing/exploding gradient problem, making the optimization difficult. Moreover, the inherently recurrent dependency in RNN prevents parallelization within a sequence during training and therefore limits the computations. In this paper, we present a novel design --- Temporal Deformable Convolutional Encoder-Decoder Networks (dubbed as TDConvED) that fully employ convolutions in both encoder and decoder networks for video captioning. Technically, we exploit convolutional block structures that compute intermediate states of a fixed number of inputs and stack several blocks to capture long-term relationships. The structure in encoder is further equipped with temporal deformable convolution to enable free-form deformation of temporal sampling. Our model also capitalizes on temporal attention mechanism for sentence generation. Extensive experiments are conducted on both MSVD and MSR-VTT video captioning datasets, and superior results are reported when comparing to conventional RNN-based encoder-decoder techniques. More remarkably, TDConvED increases CIDEr-D performance from 58.8% to 67.2% on MSVD.
We study the problem of video-to-video synthesis, whose goal is to learn a mapping function from an input source video (e.g., a sequence of semantic segmentation masks) to an output photorealistic video that precisely depicts the content of the source video. While its image counterpart, the image-to-image synthesis problem, is a popular topic, the video-to-video synthesis problem is less explored in the literature. Without understanding temporal dynamics, directly applying existing image synthesis approaches to an input video often results in temporally incoherent videos of low visual quality. In this paper, we propose a novel video-to-video synthesis approach under the generative adversarial learning framework. Through carefully-designed generator and discriminator architectures, coupled with a spatio-temporal adversarial objective, we achieve high-resolution, photorealistic, temporally coherent video results on a diverse set of input formats including segmentation masks, sketches, and poses. Experiments on multiple benchmarks show the advantage of our method compared to strong baselines. In particular, our model is capable of synthesizing 2K resolution videos of street scenes up to 30 seconds long, which significantly advances the state-of-the-art of video synthesis. Finally, we apply our approach to future video prediction, outperforming several state-of-the-art competing systems.
Dense video captioning is a newly emerging task that aims at both localizing and describing all events in a video. We identify and tackle two challenges on this task, namely, (1) how to utilize both past and future contexts for accurate event proposal predictions, and (2) how to construct informative input to the decoder for generating natural event descriptions. First, previous works predominantly generate temporal event proposals in the forward direction, which neglects future video context. We propose a bidirectional proposal method that effectively exploits both past and future contexts to make proposal predictions. Second, different events ending at (nearly) the same time are indistinguishable in the previous works, resulting in the same captions. We solve this problem by representing each event with an attentive fusion of hidden states from the proposal module and video contents (e.g., C3D features). We further propose a novel context gating mechanism to balance the contributions from the current event and its surrounding contexts dynamically. We empirically show that our attentively fused event representation is superior to the proposal hidden states or video contents alone. By coupling proposal and captioning modules into one unified framework, our model outperforms the state-of-the-arts on the ActivityNet Captions dataset with a relative gain of over 100% (Meteor score increases from 4.82 to 9.65).
Dense video captioning aims to generate text descriptions for all events in an untrimmed video. This involves both detecting and describing events. Therefore, all previous methods on dense video captioning tackle this problem by building two models, i.e. an event proposal and a captioning model, for these two sub-problems. The models are either trained separately or in alternation. This prevents direct influence of the language description to the event proposal, which is important for generating accurate descriptions. To address this problem, we propose an end-to-end transformer model for dense video captioning. The encoder encodes the video into appropriate representations. The proposal decoder decodes from the encoding with different anchors to form video event proposals. The captioning decoder employs a masking network to restrict its attention to the proposal event over the encoding feature. This masking network converts the event proposal to a differentiable mask, which ensures the consistency between the proposal and captioning during training. In addition, our model employs a self-attention mechanism, which enables the use of efficient non-recurrent structure during encoding and leads to performance improvements. We demonstrate the effectiveness of this end-to-end model on ActivityNet Captions and YouCookII datasets, where we achieved 10.12 and 6.58 METEOR score, respectively.