亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the field of computational finance, it is common for the quantity of interest to be expected values of functions of random variables via stochastic differential equations (SDEs). For SDEs with globally Lipschitz coefficients and commutative diffusion coefficients, the explicit Milstein scheme, relying on only Brownian increments and thus easily implementable, can be combined with the multilevel Monte Carlo (MLMC) method proposed by Giles \cite{giles2008multilevel} to give the optimal overall computational cost $\mathcal{O}(\epsilon^{-2})$, where $\epsilon$ is the required target accuracy. For multi-dimensional SDEs that do not satisfy the commutativity condition, a kind of one-half order truncated Milstein-type scheme without L\'evy areas is introduced by Giles and Szpruch \cite{giles2014antithetic}, which combined with the antithetic MLMC gives the optimal computational cost under globally Lipschitz conditions. In the present work, we turn to SDEs with non-globally Lipschitz continuous coefficients, for which a family of modified Milstein-type schemes without L\'evy areas is proposed. The expected one-half order of strong convergence is recovered in a non-globally Lipschitz setting, where the diffusion coefficients are allowed to grow superlinearly. This helps us to analyze the relevant variance of the multilevel estimator and the optimal computational cost is finally achieved for the antithetic MLMC. The analysis of both the convergence rate and the desired variance in the non-globally Lipschitz setting is highly non-trivial and non-standard arguments are developed to overcome some essential difficulties. Numerical experiments are provided to confirm the theoretical findings.

相關內容

It is well known that the Euler method for approximating the solutions of a random ordinary differential equation $\mathrm{d}X_t/\mathrm{d}t = f(t, X_t, Y_t)$ driven by a stochastic process $\{Y_t\}_t$ with $\theta$-H\"older sample paths is estimated to be of strong order $\theta$ with respect to the time step, provided $f=f(t, x, y)$ is sufficiently regular and with suitable bounds. Here, it is proved that, in many typical cases, further conditions on the noise can be exploited so that the strong convergence is actually of order 1, regardless of the H\"older regularity of the sample paths. This applies for instance to additive or multiplicative It\^o process noises (such as Wiener, Ornstein-Uhlenbeck, and geometric Brownian motion processes); to point-process noises (such as Poisson point processes and Hawkes self-exciting processes, which even have jump-type discontinuities); and to transport-type processes with sample paths of bounded variation. The result is based on a novel approach, estimating the global error as an iterated integral over both large and small mesh scales, and switching the order of integration to move the critical regularity to the large scale. The work is complemented with numerical simulations illustrating the strong order 1 convergence in those cases, and with an example with fractional Brownian motion noise with Hurst parameter $0 < H < 1/2$ for which the order of convergence is $H + 1/2$, hence lower than the attained order 1 in the examples above, but still higher than the order $H$ of convergence expected from previous works.

We study the complexity of producing $(\delta,\epsilon)$-stationary points of Lipschitz objectives which are possibly neither smooth nor convex, using only noisy function evaluations. Recent works proposed several stochastic zero-order algorithms that solve this task, all of which suffer from a dimension-dependence of $\Omega(d^{3/2})$ where $d$ is the dimension of the problem, which was conjectured to be optimal. We refute this conjecture by providing a faster algorithm that has complexity $O(d\delta^{-1}\epsilon^{-3})$, which is optimal (up to numerical constants) with respect to $d$ and also optimal with respect to the accuracy parameters $\delta,\epsilon$, thus solving an open question due to Lin et al. (NeurIPS'22). Moreover, the convergence rate achieved by our algorithm is also optimal for smooth objectives, proving that in the nonconvex stochastic zero-order setting, nonsmooth optimization is as easy as smooth optimization. We provide algorithms that achieve the aforementioned convergence rate in expectation as well as with high probability. Our analysis is based on a simple yet powerful geometric lemma regarding the Goldstein-subdifferential set, which allows utilizing recent advancements in first-order nonsmooth nonconvex optimization.

Decision tree learning is increasingly being used for pointwise inference. Important applications include causal heterogenous treatment effects and dynamic policy decisions, as well as conditional quantile regression and design of experiments, where tree estimation and inference is conducted at specific values of the covariates. In this paper, we call into question the use of decision trees (trained by adaptive recursive partitioning) for such purposes by demonstrating that they can fail to achieve polynomial rates of convergence in uniform norm, even with pruning. Instead, the convergence may be poly-logarithmic or, in some important special cases, such as honest regression trees, fail completely. We show that random forests can remedy the situation, turning poor performing trees into nearly optimal procedures, at the cost of losing interpretability and introducing two additional tuning parameters. The two hallmarks of random forests, subsampling and the random feature selection mechanism, are seen to each distinctively contribute to achieving nearly optimal performance for the model class considered.

Dynamic vector commitments that enable local updates of opening proofs have applications ranging from verifiable databases with membership changes to stateless clients on blockchains. In these applications, each user maintains a relevant subset of the committed messages and the corresponding opening proofs with the goal of ensuring a succinct global state. When the messages are updated, users are given some global update information and update their opening proofs to match the new vector commitment. We investigate the relation between the size of the update information and the runtime complexity needed to update an individual opening proof. Existing vector commitment schemes require that either the information size or the runtime scale linearly in the number k of updated state elements. We construct a vector commitment scheme that asymptotically achieves both length and runtime that is sublinear in k. We prove an information-theoretic lower bound on the relation between the update information size and runtime complexity that shows the asymptotic optimality of our scheme. While in practice, the construction is not yet competitive with Verkle commitments, our approach may point the way towards more performant vector commitments.

In this work, we aim to characterize the statistical complexity of realizable regression both in the PAC learning setting and the online learning setting. Previous work had established the sufficiency of finiteness of the fat shattering dimension for PAC learnability and the necessity of finiteness of the scaled Natarajan dimension, but little progress had been made towards a more complete characterization since the work of Simon 1997 (SICOMP '97). To this end, we first introduce a minimax instance optimal learner for realizable regression and propose a novel dimension that both qualitatively and quantitatively characterizes which classes of real-valued predictors are learnable. We then identify a combinatorial dimension related to the Graph dimension that characterizes ERM learnability in the realizable setting. Finally, we establish a necessary condition for learnability based on a combinatorial dimension related to the DS dimension, and conjecture that it may also be sufficient in this context. Additionally, in the context of online learning we provide a dimension that characterizes the minimax instance optimal cumulative loss up to a constant factor and design an optimal online learner for realizable regression, thus resolving an open question raised by Daskalakis and Golowich in STOC '22.

In this paper, we consider a new approach for semi-discretization in time and spatial discretization of a class of semi-linear stochastic partial differential equations (SPDEs) with multiplicative noise. The drift term of the SPDEs is only assumed to satisfy a one-sided Lipschitz condition and the diffusion term is assumed to be globally Lipschitz continuous. Our new strategy for time discretization is based on the Milstein method from stochastic differential equations. We use the energy method for its error analysis and show a strong convergence order of nearly $1$ for the approximate solution. The proof is based on new H\"older continuity estimates of the SPDE solution and the nonlinear term. For the general polynomial-type drift term, there are difficulties in deriving even the stability of the numerical solutions. We propose an interpolation-based finite element method for spatial discretization to overcome the difficulties. Then we obtain $H^1$ stability, higher moment $H^1$ stability, $L^2$ stability, and higher moment $L^2$ stability results using numerical and stochastic techniques. The nearly optimal convergence orders in time and space are hence obtained by coupling all previous results. Numerical experiments are presented to implement the proposed numerical scheme and to validate the theoretical results.

Random walks (or Markov chains) are models extensively used in theoretical computer science. Several tools, including analysis of quantities such as hitting and mixing times, are helpful for devising randomized algorithms. A notable example is Sch\"oning's algorithm for the satisfiability (SAT) problem. In this work, we use the density-matrix formalism to define a quantum Markov chain model which directly generalizes classical walks, and we show that a common tools such as hitting times can be computed with a similar formula as the one found in the classical theory, which we then apply to known quantum settings such as Grover's algorithm.

Many stochastic processes in the physical and biological sciences can be modelled using Brownian dynamics with multiplicative noise. However, numerical integrators for these processes can lose accuracy or even fail to converge when the diffusion term is configuration-dependent. One remedy is to construct a transform to a constant-diffusion process and sample the transformed process instead. In this work, we explain how coordinate-based and time-rescaling-based transforms can be used either individually or in combination to map a general class of variable-diffusion Brownian motion processes into constant-diffusion ones. The transforms are invertible, thus allowing recovery of the original dynamics. We motivate our methodology using examples in one dimension before then considering multivariate diffusion processes. We illustrate the benefits of the transforms through numerical simulations, demonstrating how the right combination of integrator and transform can improve computational efficiency and the order of convergence to the invariant distribution. Notably, the transforms that we derive are applicable to a class of multibody, anisotropic Stokes-Einstein diffusion that has applications in biophysical modelling.

This paper presents a novel approach for optical flow control of Micro Air Vehicles (MAVs). The task is challenging due to the nonlinearity of optical flow observables. Our proposed Incremental Nonlinear Dynamic Inversion (INDI) control scheme incorporates an efficient data-driven method to address the nonlinearity. It directly estimates the inverse of the time-varying control effectiveness in real-time, eliminating the need for the constant assumption and avoiding high computation in traditional INDI. This approach effectively handles fast-changing system dynamics commonly encountered in optical flow control, particularly height-dependent changes. We demonstrate the robustness and efficiency of the proposed control scheme in numerical simulations and also real-world flight tests: multiple landings of an MAV on a static and flat surface with various tracking setpoints, hovering and landings on moving and undulating surfaces. Despite being challenged with the presence of noisy optical flow estimates and the lateral and vertical movement of the landing surfaces, the MAV is able to successfully track or land on the surface with an exponential decay of both height and vertical velocity at almost the same time, as desired.

Gaussian variational inference and the Laplace approximation are popular alternatives to Markov chain Monte Carlo that formulate Bayesian posterior inference as an optimization problem, enabling the use of simple and scalable stochastic optimization algorithms. However, a key limitation of both methods is that the solution to the optimization problem is typically not tractable to compute; even in simple settings the problem is nonconvex. Thus, recently developed statistical guarantees -- which all involve the (data) asymptotic properties of the global optimum -- are not reliably obtained in practice. In this work, we provide two major contributions: a theoretical analysis of the asymptotic convexity properties of variational inference with a Gaussian family and the maximum a posteriori (MAP) problem required by the Laplace approximation; and two algorithms -- consistent Laplace approximation (CLA) and consistent stochastic variational inference (CSVI) -- that exploit these properties to find the optimal approximation in the asymptotic regime. Both CLA and CSVI involve a tractable initialization procedure that finds the local basin of the optimum, and CSVI further includes a scaled gradient descent algorithm that provably stays locally confined to that basin. Experiments on nonconvex synthetic and real-data examples show that compared with standard variational and Laplace approximations, both CSVI and CLA improve the likelihood of obtaining the global optimum of their respective optimization problems.

北京阿比特科技有限公司