亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sentiment analysis is a natural language processing task that aims to identify and extract the emotional aspects of a text. However, many existing sentiment analysis methods primarily classify the overall polarity of a text, overlooking the specific phrases that convey sentiment. In this paper, we applied an approach to sentiment analysis based on a question-answering framework. Our approach leverages the power of Bidirectional Autoregressive Transformer (BART), a pre-trained sequence-to-sequence model, to extract a phrase from a given text that amplifies a given sentiment polarity. We create a natural language question that identifies the specific emotion to extract and then guide BART to pay attention to the relevant emotional cues in the text. We use a classifier within BART to predict the start and end positions of the answer span within the text, which helps to identify the precise boundaries of the extracted emotion phrase. Our approach offers several advantages over most sentiment analysis studies, including capturing the complete context and meaning of the text and extracting precise token spans that highlight the intended sentiment. We achieved an end loss of 87% and Jaccard score of 0.61.

相關內容

Context: Bug bisection is a common technique used to identify a revision that introduces a bug or indirectly fixes a bug, and often involves executing multiple revisions of a project to determine whether the bug is present within the revision. However, many legacy revisions often cannot be successfully compiled due to changes in the programming language or tools used in the compilation process, adding complexity and preventing automation in the bisection process. Objective: In this paper, we introduce an approach to repair test cases of Java projects by performing dependency minimization. Our approach aims to remove classes and methods that are not required for the execution of one or more test cases. Unlike existing state-of-the-art techniques, our approach performs minimization at source-level, which allows compile-time errors to be fixed. Method: A standalone Java tool implementing our technique was developed, and we evaluated our technique using subjects from Defects4J retargeted against Java 8 and 17. Results: Our evaluation showed that a majority of subjects can be repaired solely by performing minimization, including replicating the test results of the original version. Furthermore, our technique is also shown to achieve accurate minimized results, while only adding a small overhead to the bisection process. Conclusion: Our proposed technique is shown to be effective for repairing build failures with minimal overhead, making it suitable for use in automated bug bisection. Our tool can also be adapted for use cases such as bug corpus creation and refactoring.

Efficiently capturing consistent and complementary semantic features in a multimodal conversation context is crucial for Multimodal Emotion Recognition in Conversation (MERC). Existing methods mainly use graph structures to model dialogue context semantic dependencies and employ Graph Neural Networks (GNN) to capture multimodal semantic features for emotion recognition. However, these methods are limited by some inherent characteristics of GNN, such as over-smoothing and low-pass filtering, resulting in the inability to learn long-distance consistency information and complementary information efficiently. Since consistency and complementarity information correspond to low-frequency and high-frequency information, respectively, this paper revisits the problem of multimodal emotion recognition in conversation from the perspective of the graph spectrum. Specifically, we propose a Graph-Spectrum-based Multimodal Consistency and Complementary collaborative learning framework GS-MCC. First, GS-MCC uses a sliding window to construct a multimodal interaction graph to model conversational relationships and uses efficient Fourier graph operators to extract long-distance high-frequency and low-frequency information, respectively. Then, GS-MCC uses contrastive learning to construct self-supervised signals that reflect complementarity and consistent semantic collaboration with high and low-frequency signals, thereby improving the ability of high and low-frequency information to reflect real emotions. Finally, GS-MCC inputs the collaborative high and low-frequency information into the MLP network and softmax function for emotion prediction. Extensive experiments have proven the superiority of the GS-MCC architecture proposed in this paper on two benchmark data sets.

Diffusion models have recently demonstrated an impressive ability to address inverse problems in an unsupervised manner. While existing methods primarily focus on modifying the posterior sampling process, the potential of the forward process remains largely unexplored. In this work, we propose Shortcut Sampling for Diffusion(SSD), a novel approach for solving inverse problems in a zero-shot manner. Instead of initiating from random noise, the core concept of SSD is to find a specific transitional state that bridges the measurement image y and the restored image x. By utilizing the shortcut path of "input - transitional state - output", SSD can achieve precise restoration with fewer steps. To derive the transitional state during the forward process, we introduce Distortion Adaptive Inversion. Moreover, we apply back projection as additional consistency constraints during the generation process. Experimentally, we demonstrate SSD's effectiveness on multiple representative IR tasks. Our method achieves competitive results with only 30 NFEs compared to state-of-the-art zero-shot methods(100 NFEs) and outperforms them with 100 NFEs in certain tasks. Code is available at //github.com/GongyeLiu/SSD

Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning LLMs with the ever-changing world knowledge without re-training from scratch. We categorize research works systemically and provide in-depth comparisons and discussion. We also discuss existing challenges and highlight future directions to facilitate research in this field. We release the paper list at //github.com/hyintell/awesome-refreshing-llms

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Triple extraction is an essential task in information extraction for natural language processing and knowledge graph construction. In this paper, we revisit the end-to-end triple extraction task for sequence generation. Since generative triple extraction may struggle to capture long-term dependencies and generate unfaithful triples, we introduce a novel model, contrastive triple extraction with a generative transformer. Specifically, we introduce a single shared transformer module for encoder-decoder-based generation. To generate faithful results, we propose a novel triplet contrastive training object. Moreover, we introduce two mechanisms to further improve model performance (i.e., batch-wise dynamic attention-masking and triple-wise calibration). Experimental results on three datasets (i.e., NYT, WebNLG, and MIE) show that our approach achieves better performance than that of baselines.

Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

In structure learning, the output is generally a structure that is used as supervision information to achieve good performance. Considering the interpretation of deep learning models has raised extended attention these years, it will be beneficial if we can learn an interpretable structure from deep learning models. In this paper, we focus on Recurrent Neural Networks (RNNs) whose inner mechanism is still not clearly understood. We find that Finite State Automaton (FSA) that processes sequential data has more interpretable inner mechanism and can be learned from RNNs as the interpretable structure. We propose two methods to learn FSA from RNN based on two different clustering methods. We first give the graphical illustration of FSA for human beings to follow, which shows the interpretability. From the FSA's point of view, we then analyze how the performance of RNNs are affected by the number of gates, as well as the semantic meaning behind the transition of numerical hidden states. Our results suggest that RNNs with simple gated structure such as Minimal Gated Unit (MGU) is more desirable and the transitions in FSA leading to specific classification result are associated with corresponding words which are understandable by human beings.

Automatically creating the description of an image using any natural languages sentence like English is a very challenging task. It requires expertise of both image processing as well as natural language processing. This paper discuss about different available models for image captioning task. We have also discussed about how the advancement in the task of object recognition and machine translation has greatly improved the performance of image captioning model in recent years. In addition to that we have discussed how this model can be implemented. In the end, we have also evaluated the performance of model using standard evaluation matrices.

北京阿比特科技有限公司