We present NeuralLabeling, a labeling approach and toolset for annotating a scene using either bounding boxes or meshes and generating segmentation masks, affordance maps, 2D bounding boxes, 3D bounding boxes, 6DOF object poses, depth maps and object meshes. NeuralLabeling uses Neural Radiance Fields (NeRF) as renderer, allowing labeling to be performed using 3D spatial tools while incorporating geometric clues such as occlusions, relying only on images captured from multiple viewpoints as input. To demonstrate the applicability of NeuralLabeling to a practical problem in robotics, we added ground truth depth maps to 30000 frames of transparent object RGB and noisy depth maps of glasses placed in a dishwasher captured using an RGBD sensor, yielding the Dishwasher30k dataset. We show that training a simple deep neural network with supervision using the annotated depth maps yields a higher reconstruction performance than training with the previously applied weakly supervised approach.
We consider the problem of solving a family of parametric mixed-integer linear optimization problems where some entries in the input data change. We introduce the concept of $cutting-plane$ $layer$ (CPL), $i.e.$, a differentiable cutting-plane generator mapping the problem data and previous iterates to cutting planes. We propose a CPL implementation to generate split cuts, and by combining several CPLs, we devise a differentiable cutting-plane algorithm that exploits the repeated nature of parametric instances. In an offline phase, we train our algorithm by updating the parameters controlling the CPLs, thus altering cut generation. Once trained, our algorithm computes, with predictable execution times and a fixed number of cuts, solutions with low integrality gaps. Preliminary computational tests show that our algorithm generalizes on unseen instances and captures underlying parametric structures.
We open-source a state-of-the-art 7.5B-parameter generative model series named PhoGPT for Vietnamese, which includes the base pre-trained monolingual model PhoGPT-7B5 and its instruction-following variant, PhoGPT-7B5-Instruct. In addition, we also demonstrate its superior performance compared to previous open-source models through a human evaluation experiment. GitHub: //github.com/VinAIResearch/PhoGPT
This paper presents a novel approach, called Prototype-based Self-Distillation (ProS), for unsupervised face representation learning. The existing supervised methods heavily rely on a large amount of annotated training facial data, which poses challenges in terms of data collection and privacy concerns. To address these issues, we propose ProS, which leverages a vast collection of unlabeled face images to learn a comprehensive facial omni-representation. In particular, ProS consists of two vision-transformers (teacher and student models) that are trained with different augmented images (cropping, blurring, coloring, etc.). Besides, we build a face-aware retrieval system along with augmentations to obtain the curated images comprising predominantly facial areas. To enhance the discrimination of learned features, we introduce a prototype-based matching loss that aligns the similarity distributions between features (teacher or student) and a set of learnable prototypes. After pre-training, the teacher vision transformer serves as a backbone for downstream tasks, including attribute estimation, expression recognition, and landmark alignment, achieved through simple fine-tuning with additional layers. Extensive experiments demonstrate that our method achieves state-of-the-art performance on various tasks, both in full and few-shot settings. Furthermore, we investigate pre-training with synthetic face images, and ProS exhibits promising performance in this scenario as well.
Generating high-quality and person-generic visual dubbing remains a challenge. Recent innovation has seen the advent of a two-stage paradigm, decoupling the rendering and lip synchronization process facilitated by intermediate representation as a conduit. Still, previous methodologies rely on rough landmarks or are confined to a single speaker, thus limiting their performance. In this paper, we propose DiffDub: Diffusion-based dubbing. We first craft the Diffusion auto-encoder by an inpainting renderer incorporating a mask to delineate editable zones and unaltered regions. This allows for seamless filling of the lower-face region while preserving the remaining parts. Throughout our experiments, we encountered several challenges. Primarily, the semantic encoder lacks robustness, constricting its ability to capture high-level features. Besides, the modeling ignored facial positioning, causing mouth or nose jitters across frames. To tackle these issues, we employ versatile strategies, including data augmentation and supplementary eye guidance. Moreover, we encapsulated a conformer-based reference encoder and motion generator fortified by a cross-attention mechanism. This enables our model to learn person-specific textures with varying references and reduces reliance on paired audio-visual data. Our rigorous experiments comprehensively highlight that our ground-breaking approach outpaces existing methods with considerable margins and delivers seamless, intelligible videos in person-generic and multilingual scenarios.
This paper presents a unified approach for maximizing continuous DR-submodular functions that encompasses a range of settings and oracle access types. Our approach includes a Frank-Wolfe type offline algorithm for both monotone and non-monotone functions, with different restrictions on the general convex set. We consider settings where the oracle provides access to either the gradient of the function or only the function value, and where the oracle access is either deterministic or stochastic. We determine the number of required oracle accesses in all cases. Our approach gives new/improved results for nine out of the sixteen considered cases, avoids computationally expensive projections in two cases, with the proposed framework matching performance of state-of-the-art approaches in the remaining five cases. Notably, our approach for the stochastic function value-based oracle enables the first regret bounds with bandit feedback for stochastic DR-submodular functions.
We introduce Resilient Multiple Choice Learning (rMCL), an extension of the MCL approach for conditional distribution estimation in regression settings where multiple targets may be sampled for each training input. Multiple Choice Learning is a simple framework to tackle multimodal density estimation, using the Winner-Takes-All (WTA) loss for a set of hypotheses. In regression settings, the existing MCL variants focus on merging the hypotheses, thereby eventually sacrificing the diversity of the predictions. In contrast, our method relies on a novel learned scoring scheme underpinned by a mathematical framework based on Voronoi tessellations of the output space, from which we can derive a probabilistic interpretation. After empirically validating rMCL with experiments on synthetic data, we further assess its merits on the sound source localization problem, demonstrating its practical usefulness and the relevance of its interpretation.
This paper presents the workspace optimization of one-translational two-rotational (1T2R) parallel manipulators using a dimensionally homogeneous constraint-embedded Jacobian. The mixed degrees of freedom of 1T2R parallel manipulators, which cause dimensional inconsistency, make it difficult to optimize their architectural parameters. To solve this problem, a point-based approach with a shifting property, selection matrix, and constraint-embedded inverse Jacobian is proposed. A simplified formulation is provided, eliminating the complex partial differentiation required in previous approaches. The dimensional homogeneity of the proposed method was analytically proven, and its validity was confirmed by comparing it with the conventional point-based method using a 3-PRS manipulator. Furthermore, the approach was applied to an asymmetric 2-RRS/RRRU manipulator with no parasitic motion. This mechanism has a T-shape combination of limbs with different kinematic parameters, making it challenging to derive a dimensionally homogeneous Jacobian using the conventional method. Finally, optimization was performed, and the results show that the proposed method is more efficient than the conventional approach. The efficiency and simplicity of the proposed method were verified using two distinct parallel manipulators.
Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.
Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.