亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models offer new ways of empowering people to program robot applications-namely, code generation via prompting. However, the code generated by LLMs is susceptible to errors. This work reports a preliminary exploration that empirically characterizes common errors produced by LLMs in robot programming. We categorize these errors into two phases: interpretation and execution. In this work, we focus on errors in execution and observe that they are caused by LLMs being "forgetful" of key information provided in user prompts. Based on this observation, we propose prompt engineering tactics designed to reduce errors in execution. We then demonstrate the effectiveness of these tactics with three language models: ChatGPT, Bard, and LLaMA-2. Finally, we discuss lessons learned from using LLMs in robot programming and call for the benchmarking of LLM-powered end-user development of robot applications.

相關內容

機器人(英語:Robot)包括一切模擬人類行為或思想與模擬其他生物的機械(如機器狗,機器貓等)。狹義上對機器人的定義還有很多分類法及爭議,有些電腦程序甚至也被稱為機器人。在當代工業中,機器人指能自動運行任務的人造機器設備,用以取代或協助人類工作,一般會是機電設備,由計算機程序或是電子電路控制。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Recent advances in text-to-image generation models have unlocked vast potential for visual creativity. However, these models struggle with generation of consistent characters, a crucial aspect for numerous real-world applications such as story visualization, game development asset design, advertising, and more. Current methods typically rely on multiple pre-existing images of the target character or involve labor-intensive manual processes. In this work, we propose a fully automated solution for consistent character generation, with the sole input being a text prompt. We introduce an iterative procedure that, at each stage, identifies a coherent set of images sharing a similar identity and extracts a more consistent identity from this set. Our quantitative analysis demonstrates that our method strikes a better balance between prompt alignment and identity consistency compared to the baseline methods, and these findings are reinforced by a user study. To conclude, we showcase several practical applications of our approach. Project page is available at //omriavrahami.com/the-chosen-one

The pre-trained language models are continually fine-tuned to better support downstream applications. However, this operation may result in significant performance degeneration on general tasks beyond the targeted domain. To overcome this problem, we propose a novel method which enables the fine-tuned model to stay resilient in general perspectives. Our method is conducted in the form of model merging (namely LM-Cocktail), where the fine-tuned language model is merged with the pre-trained base model or the peer models from other domains through weighted average. Despite simplicity, LM-Cocktail is surprisingly effective: the resulted model is able to achieve a strong empirical performance in the whole scope of general tasks while preserving a superior capacity in its targeted domain. We conduct comprehensive experiments with LLama and BGE model on popular benchmarks, including FLAN, MMLU, MTEB, whose results validate the efficacy of our proposed method. The code and checkpoints are available at //github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail.

Recently, integrating video foundation models and large language models to build a video understanding system can overcome the limitations of specific pre-defined vision tasks. Yet, existing systems can only handle videos with very few frames. For long videos, the computation complexity, memory cost, and long-term temporal connection impose additional challenges. Taking advantage of the Atkinson-Shiffrin memory model, with tokens in Transformers being employed as the carriers of memory in combination with our specially designed memory mechanism, we propose the MovieChat to overcome these challenges. MovieChat achieves state-of-the-art performance in long video understanding, along with the released MovieChat-1K benchmark with 1K long video and 14K manual annotations for validation of the effectiveness of our method.

This article focuses on the development and evaluation of Small-sized Czech sentence embedding models. Small models are important components for real-time industry applications in resource-constrained environments. Given the limited availability of labeled Czech data, alternative approaches, including pre-training, knowledge distillation, and unsupervised contrastive fine-tuning, are investigated. Comprehensive intrinsic and extrinsic analyses are conducted, showcasing the competitive performance of our models compared to significantly larger counterparts, with approximately 8 times smaller size and 5 times faster speed than conventional Base-sized models. To promote cooperation and reproducibility, both the models and the evaluation pipeline are made publicly accessible. Ultimately, this article presents practical applications of the developed sentence embedding models in Seznam.cz, the Czech search engine. These models have effectively replaced previous counterparts, enhancing the overall search experience for instance, in organic search, featured snippets, and image search. This transition has yielded improved performance.

The recent explosion in the capabilities of large language models has led to a wave of interest in how best to prompt a model to perform a given task. While it may be tempting to simply choose a prompt based on average performance on a validation set, this can lead to a deployment where unexpectedly poor responses are generated, especially for the worst-off users. To mitigate this prospect, we propose Prompt Risk Control, a lightweight framework for selecting a prompt based on rigorous upper bounds on families of informative risk measures. We offer methods for producing bounds on a diverse set of metrics, including quantities that measure worst-case responses and disparities in generation quality across the population of users. In addition, we extend the underlying statistical bounding techniques to accommodate the possibility of distribution shifts in deployment. Experiments on applications such as open-ended chat, medical question summarization, and code generation highlight how such a framework can foster responsible deployment by reducing the risk of the worst outcomes.

Language models for code such as CodeBERT offer the capability to learn advanced source code representation, but their opacity poses barriers to understanding of captured properties. Recent attention analysis studies provide initial interpretability insights by focusing solely on attention weights rather than considering the wider context modeling of Transformers. This study aims to shed some light on the previously ignored factors of the attention mechanism beyond the attention weights. We conduct an initial empirical study analyzing both attention distributions and transformed representations in CodeBERT. Across two programming languages, Java and Python, we find that the scaled transformation norms of the input better capture syntactic structure compared to attention weights alone. Our analysis reveals characterization of how CodeBERT embeds syntactic code properties. The findings demonstrate the importance of incorporating factors beyond just attention weights for rigorously understanding neural code models. This lays the groundwork for developing more interpretable models and effective uses of attention mechanisms in program analysis.

Applying large language models (LLMs) to power systems presents a promising avenue for enhancing decision-making and operational efficiency. However, this action may also incur potential security threats, which have not been fully recognized so far. To this end, this letter analyzes potential threats incurred by applying LLMs to power systems, emphasizing the need for urgent research and development of countermeasures.

The remarkable advancements in large language models (LLMs) have significantly enhanced the performance in few-shot learning settings. By using only a small number of labeled examples, referred to as demonstrations, LLMs can effectively grasp the task at hand through in-context learning. However, the process of selecting appropriate demonstrations has received limited attention in prior work. This paper addresses the issue of identifying the most informative demonstrations for few-shot learning by approaching it as a pool-based Active Learning (AL) problem over a single iteration. Our objective is to investigate how AL algorithms can serve as effective demonstration selection methods for in-context learning. We compare various standard AL algorithms based on uncertainty, diversity, and similarity, and consistently observe that the latter outperforms all other methods, including random sampling. Notably, uncertainty sampling, despite its success in conventional supervised learning scenarios, performs poorly in this context. Our extensive experimentation involving a diverse range of GPT and OPT models across $24$ classification and multi-choice tasks, coupled with thorough analysis, unambiguously demonstrates that in-context example selection through AL prioritizes high-quality examples that exhibit low uncertainty and bear similarity to the test examples.

Oriented object detection, a specialized subfield in computer vision, finds applications across diverse scenarios, excelling particularly when dealing with objects of arbitrary orientations. Conversely, point annotation, which treats objects as single points, offers a cost-effective alternative to rotated and horizontal bounding boxes but sacrifices performance due to the loss of size and orientation information. In this study, we introduce the P2RBox network, which leverages point annotations and a mask generator to create mask proposals, followed by filtration through our Inspector Module and Constrainer Module. This process selects high-quality masks, which are subsequently converted into rotated box annotations for training a fully supervised detector. Specifically, we've thoughtfully crafted an Inspector Module rooted in multi-instance learning principles to evaluate the semantic score of masks. We've also proposed a more robust mask quality assessment in conjunction with the Constrainer Module. Furthermore, we've introduced a Symmetry Axis Estimation (SAE) Module inspired by the spectral theorem for symmetric matrices to transform the top-performing mask proposal into rotated bounding boxes. P2RBox performs well with three fully supervised rotated object detectors: RetinaNet, Rotated FCOS, and Oriented R-CNN. By combining with Oriented R-CNN, P2RBox achieves 62.26% on DOTA-v1.0 test dataset. As far as we know, this is the first attempt at training an oriented object detector with point supervision.

Search engine has become a fundamental component in various web and mobile applications. Retrieving relevant documents from the massive datasets is challenging for a search engine system, especially when faced with verbose or tail queries. In this paper, we explore a vector space search framework for document retrieval. Specifically, we trained a deep semantic matching model so that each query and document can be encoded as a low dimensional embedding. Our model was trained based on BERT architecture. We deployed a fast k-nearest-neighbor index service for online serving. Both offline and online metrics demonstrate that our method improved retrieval performance and search quality considerably, particularly for tail

北京阿比特科技有限公司