亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the advent of machine learning in applications of critical infrastructure such as healthcare and energy, privacy is a growing concern in the minds of stakeholders. It is pivotal to ensure that neither the model nor the data can be used to extract sensitive information used by attackers against individuals or to harm whole societies through the exploitation of critical infrastructure. The applicability of machine learning in these domains is mostly limited due to a lack of trust regarding the transparency and the privacy constraints. Various safety-critical use cases (mostly relying on time-series data) are currently underrepresented in privacy-related considerations. By evaluating several privacy-preserving methods regarding their applicability on time-series data, we validated the inefficacy of encryption for deep learning, the strong dataset dependence of differential privacy, and the broad applicability of federated methods.

相關內容

In this study we analyzed content and marketing tactics of digital medicine companies to evaluate various types of cross site tracking middleware used to extract health information from users without permission. More specifically we examine how browsing data can be exchanged between digital medicine companies and Facebook for advertising and lead generation purposes. The analysis was focused on a small ecosystem of companies offering services to patients within the cancer community that frequently engage on social media. Some companies in our content analysis may fit the legal definition of a personal health record vendor covered by the Federal Trade Commission, others are HIPAA covered entities. The findings of our analysis raise policy questions about what constitutes a breach under the Federal trade Commission's Health Breach Notification Rule. Several examples demonstrate serious problems with inconsistent privacy practices and reveal how digital medicine dark patterns may elicit unauthorized data from patients and companies serving ads. Further we discuss how these common marketing practices enable surveillance and targeting of medical ads to vulnerable patient populations, which may not be apparent to the companies targeting ads.

The relatedness between an economic actor (for instance a country, or a firm) and a product is a measure of the feasibility of that economic activity. As such, it is a driver for investments both at a private and institutional level. Traditionally, relatedness is measured using complex networks approaches derived by country-level co-occurrences. In this work, we compare complex networks and machine learning algorithms trained on both country and firm-level data. In order to quantitatively compare the different measures of relatedness, we use them to predict the future exports at country and firm-level, assuming that more related products have higher likelihood to be exported in the near future. Our results show that relatedness is scale-dependent: the best assessments are obtained by using machine learning on the same typology of data one wants to predict. Moreover, while relatedness measures based on country data are not suitable for firms, firm-level data are quite informative also to predict the development of countries. In this sense, models built on firm data provide a better assessment of relatedness with respect to country-level data. We also discuss the effect of using community detection algorithms and parameter optimization, finding that a partition into a higher number of blocks decreases the computational time while maintaining a prediction performance that is well above the network based benchmarks.

Designing data sharing mechanisms providing performance and strong privacy guarantees is a hot topic for the Online Advertising industry. Namely, a prominent proposal discussed under the Improving Web Advertising Business Group at W3C only allows sharing advertising signals through aggregated, differentially private reports of past displays. To study this proposal extensively, an open Privacy-Preserving Machine Learning Challenge took place at AdKDD'21, a premier workshop on Advertising Science with data provided by advertising company Criteo. In this paper, we describe the challenge tasks, the structure of the available datasets, report the challenge results, and enable its full reproducibility. A key finding is that learning models on large, aggregated data in the presence of a small set of unaggregated data points can be surprisingly efficient and cheap. We also run additional experiments to observe the sensitivity of winning methods to different parameters such as privacy budget or quantity of available privileged side information. We conclude that the industry needs either alternate designs for private data sharing or a breakthrough in learning with aggregated data only to keep ad relevance at a reasonable level.

Online advertising has typically been more personalized than offline advertising, through the use of machine learning models and real-time auctions for ad targeting. One specific task, predicting the likelihood of conversion (i.e.\ the probability a user will purchase the advertised product), is crucial to the advertising ecosystem for both targeting and pricing ads. Currently, these models are often trained by observing individual user behavior, but, increasingly, regulatory and technical constraints are requiring privacy-preserving approaches. For example, major platforms are moving to restrict tracking individual user events across multiple applications, and governments around the world have shown steadily more interest in regulating the use of personal data. Instead of receiving data about individual user behavior, advertisers may receive privacy-preserving feedback, such as the number of installs of an advertised app that resulted from a group of users. In this paper we outline the recent privacy-related changes in the online advertising ecosystem from a machine learning perspective. We provide an overview of the challenges and constraints when learning conversion models in this setting. We introduce a novel approach for training these models that makes use of post-ranking signals. We show using offline experiments on real world data that it outperforms a model relying on opt-in data alone, and significantly reduces model degradation when no individual labels are available. Finally, we discuss future directions for research in this evolving area.

Differential privacy is widely accepted as the de facto method for preventing data leakage in ML, and conventional wisdom suggests that it offers strong protection against privacy attacks. However, existing semantic guarantees for DP focus on membership inference, which may overestimate the adversary's capabilities and is not applicable when membership status itself is non-sensitive. In this paper, we derive the first semantic guarantees for DP mechanisms against training data reconstruction attacks under a formal threat model. We show that two distinct privacy accounting methods -- Renyi differential privacy and Fisher information leakage -- both offer strong semantic protection against data reconstruction attacks.

Bayesian Networks (BNs) have become a powerful technology for reasoning under uncertainty, particularly in areas that require causal assumptions that enable us to simulate the effect of intervention. The graphical structure of these models can be determined by causal knowledge, learnt from data, or a combination of both. While it seems plausible that the best approach in constructing a causal graph involves combining knowledge with machine learning, this approach remains underused in practice. We implement and evaluate 10 knowledge approaches with application to different case studies and BN structure learning algorithms available in the open-source Bayesys structure learning system. The approaches enable us to specify pre-existing knowledge that can be obtained from heterogeneous sources, to constrain or guide structure learning. Each approach is assessed in terms of structure learning effectiveness and efficiency, including graphical accuracy, model fitting, complexity, and runtime; making this the first paper that provides a comparative evaluation of a wide range of knowledge approaches for BN structure learning. Because the value of knowledge depends on what data are available, we illustrate the results both with limited and big data. While the overall results show that knowledge becomes less important with big data due to higher learning accuracy rendering knowledge less important, some of the knowledge approaches are actually found to be more important with big data. Amongst the main conclusions is the observation that reduced search space obtained from knowledge does not always imply reduced computational complexity, perhaps because the relationships implied by the data and knowledge are in tension.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

We detail a new framework for privacy preserving deep learning and discuss its assets. The framework puts a premium on ownership and secure processing of data and introduces a valuable representation based on chains of commands and tensors. This abstraction allows one to implement complex privacy preserving constructs such as Federated Learning, Secure Multiparty Computation, and Differential Privacy while still exposing a familiar deep learning API to the end-user. We report early results on the Boston Housing and Pima Indian Diabetes datasets. While the privacy features apart from Differential Privacy do not impact the prediction accuracy, the current implementation of the framework introduces a significant overhead in performance, which will be addressed at a later stage of the development. We believe this work is an important milestone introducing the first reliable, general framework for privacy preserving deep learning.

The field of Multi-Agent System (MAS) is an active area of research within Artificial Intelligence, with an increasingly important impact in industrial and other real-world applications. Within a MAS, autonomous agents interact to pursue personal interests and/or to achieve common objectives. Distributed Constraint Optimization Problems (DCOPs) have emerged as one of the prominent agent architectures to govern the agents' autonomous behavior, where both algorithms and communication models are driven by the structure of the specific problem. During the last decade, several extensions to the DCOP model have enabled them to support MAS in complex, real-time, and uncertain environments. This survey aims at providing an overview of the DCOP model, giving a classification of its multiple extensions and addressing both resolution methods and applications that find a natural mapping within each class of DCOPs. The proposed classification suggests several future perspectives for DCOP extensions, and identifies challenges in the design of efficient resolution algorithms, possibly through the adaptation of strategies from different areas.

北京阿比特科技有限公司