亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Foundation models offer a new opportunity to redesign existing systems and workflows with a new AI first perspective. However, operationalizing this opportunity faces several challenges and tradeoffs. The goal of this article is to offer an organizational framework for making rational choices as enterprises start their transformation journey towards an AI first organization. The choices provided are holistic, intentional and informed while avoiding distractions. The field may appear to be moving fast, but there are core fundamental factors that are relatively more slow moving. We focus on these invariant factors to build the logic of the argument.

相關內容

Compositional Natural Language Inference has been explored to assess the true abilities of neural models to perform NLI. Yet, current evaluations assume models to have full access to all primitive inferences in advance, in contrast to humans that continuously acquire inference knowledge. In this paper, we introduce the Continual Compositional Generalization in Inference (C2Gen NLI) challenge, where a model continuously acquires knowledge of constituting primitive inference tasks as a basis for compositional inferences. We explore how continual learning affects compositional generalization in NLI, by designing a continual learning setup for compositional NLI inference tasks. Our experiments demonstrate that models fail to compositionally generalize in a continual scenario. To address this problem, we first benchmark various continual learning algorithms and verify their efficacy. We then further analyze C2Gen, focusing on how to order primitives and compositional inference types and examining correlations between subtasks. Our analyses show that by learning subtasks continuously while observing their dependencies and increasing degrees of difficulty, continual learning can enhance composition generalization ability.

Several tools have recently been proposed for assisting researchers during various stages of the research life-cycle. However, these primarily concentrate on tasks such as retrieving and recommending relevant literature, reviewing and critiquing the draft, and writing of research manuscripts. Our investigation reveals a significant gap in availability of tools specifically designed to assist researchers during the challenging ideation phase of the research life-cycle. To aid with research ideation, we propose `Acceleron', a research accelerator for different phases of the research life cycle, and which is specially designed to aid the ideation process. Acceleron guides researchers through the formulation of a comprehensive research proposal, encompassing a novel research problem. The proposals motivation is validated for novelty by identifying gaps in the existing literature and suggesting a plausible list of techniques to solve the proposed problem. We leverage the reasoning and domain-specific skills of Large Language Models (LLMs) to create an agent-based architecture incorporating colleague and mentor personas for LLMs. The LLM agents emulate the ideation process undertaken by researchers, engaging researchers in an interactive fashion to aid in the development of the research proposal. Notably, our tool addresses challenges inherent in LLMs, such as hallucinations, implements a two-stage aspect-based retrieval to manage precision-recall trade-offs, and tackles issues of unanswerability. As evaluation, we illustrate the execution of our motivation validation and method synthesis workflows on proposals from the ML and NLP domain, given by 3 distinct researchers. Our observations and evaluations provided by the researchers illustrate the efficacy of the tool in terms of assisting researchers with appropriate inputs at distinct stages and thus leading to improved time efficiency.

In this study, we explore advanced strategies for enhancing software quality by detecting and refactoring data clumps, special types of code smells. Our approach transcends the capabilities of integrated development environments, utilizing a novel method that separates the detection of data clumps from the source access. This method facilitates data clump processing. We introduce a command-line interface plugin to support this novel method of processing data clumps. This research highlights the efficacy of modularized algorithms and advocates their integration into continuous workflows, promising enhanced code quality and efficient project management across various programming and integrated development environments.

Dense object counting or crowd counting has come a long way thanks to the recent development in the vision community. However, indiscernible object counting, which aims to count the number of targets that are blended with respect to their surroundings, has been a challenge. Image-based object counting datasets have been the mainstream of the current publicly available datasets. Therefore, we propose a large-scale dataset called YoutubeFish-35, which contains a total of 35 sequences of high-definition videos with high frame-per-second and more than 150,000 annotated center points across a selected variety of scenes. For benchmarking purposes, we select three mainstream methods for dense object counting and carefully evaluate them on the newly collected dataset. We propose TransVidCount, a new strong baseline that combines density and regression branches along the temporal domain in a unified framework and can effectively tackle indiscernible object counting with state-of-the-art performance on YoutubeFish-35 dataset.

Quantum computing promises to help humanity solve problems that would otherwise be intractable on classical computers. Unlike today's machines, quantum computers use a novel computing process that leverages the foundational quantum mechanical laws of nature. This unlocks unparalleled compute power for certain applications and promises to help solve some of our generation's gravest challenges, including the climate crisis, food insecurity, and widespread disease. No one entity will be able to realize this end state alone. Developing a fault-tolerant quantum supercomputer and a vibrant ecosystem around it will require deep partnerships between industry, governments, and academia. It will also require collective action to enable and promote positive applications of quantum computing and ensure that the safe and responsible use of the technology is at the center of its development and deployment. Achieving these objectives will require focusing on three priorities: 1. Impact. Ensure quantum computing benefits all of humankind by developing quantum solutions to solve critical, global problems. 2. Use. Protect against malicious use by accelerating the deployment of quantum-safe cryptography and developing governance processes and controls for the responsible use of quantum machines. 3. Access. Democratize the potential for economic growth across all of society through skilling, workforce and ecosystem development, and digital infrastructure. This paper discusses each in turn.

In science and engineering, we often work with models designed for accurate prediction of variables of interest. Recognizing that these models are approximations of reality, it becomes desirable to apply multiple models to the same data and integrate their outcomes. In this paper, we operate within the Bayesian paradigm, relying on Gaussian processes as our models. These models generate predictive probability density functions (pdfs), and the objective is to integrate them systematically, employing both linear and log-linear pooling. We introduce novel approaches for log-linear pooling, determining input-dependent weights for the predictive pdfs of the Gaussian processes. The aggregation of the pdfs is realized through Monte Carlo sampling, drawing samples of weights from their posterior. The performance of these methods, as well as those based on linear pooling, is demonstrated using a synthetic dataset.

Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.

The content based image retrieval aims to find the similar images from a large scale dataset against a query image. Generally, the similarity between the representative features of the query image and dataset images is used to rank the images for retrieval. In early days, various hand designed feature descriptors have been investigated based on the visual cues such as color, texture, shape, etc. that represent the images. However, the deep learning has emerged as a dominating alternative of hand-designed feature engineering from a decade. It learns the features automatically from the data. This paper presents a comprehensive survey of deep learning based developments in the past decade for content based image retrieval. The categorization of existing state-of-the-art methods from different perspectives is also performed for greater understanding of the progress. The taxonomy used in this survey covers different supervision, different networks, different descriptor type and different retrieval type. A performance analysis is also performed using the state-of-the-art methods. The insights are also presented for the benefit of the researchers to observe the progress and to make the best choices. The survey presented in this paper will help in further research progress in image retrieval using deep learning.

Predictions obtained by, e.g., artificial neural networks have a high accuracy but humans often perceive the models as black boxes. Insights about the decision making are mostly opaque for humans. Particularly understanding the decision making in highly sensitive areas such as healthcare or fifinance, is of paramount importance. The decision-making behind the black boxes requires it to be more transparent, accountable, and understandable for humans. This survey paper provides essential definitions, an overview of the different principles and methodologies of explainable Supervised Machine Learning (SML). We conduct a state-of-the-art survey that reviews past and recent explainable SML approaches and classifies them according to the introduced definitions. Finally, we illustrate principles by means of an explanatory case study and discuss important future directions.

Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text.

北京阿比特科技有限公司