Optimal trajectory design is computationally expensive for nonlinear and high-dimensional dynamical systems. The challenge arises from the non-convex nature of the optimization problem with multiple local optima, which usually requires a global search. Traditional numerical solvers struggle to find diverse solutions efficiently without appropriate initial guesses. In this paper, we introduce DiffuSolve, a general diffusion model-based solver for non-convex trajectory optimization. An expressive diffusion model is trained on pre-collected locally optimal solutions and efficiently samples initial guesses, which then warm-starts numerical solvers to fine-tune the feasibility and optimality. We also present DiffuSolve+, a novel constrained diffusion model with an additional loss in training that further reduces the problem constraint violations of diffusion samples. Experimental evaluations on three tasks verify the improved robustness, diversity, and a 2$\times$ to 11$\times$ increase in computational efficiency with our proposed method, which generalizes well to trajectory optimization problems of varying challenges.
Selective state space models (SSMs) represented by Mamba have demonstrated their computational efficiency and promising outcomes in various tasks, including automatic speech recognition (ASR). Mamba has been applied to ASR task with the attention-based encoder-decoder framework, where the cross-attention mechanism between encoder and decoder remains. This paper explores the capability of Mamba as the decoder-only architecture in ASR task. Our MAmba-based DEcoder-ONly approach (MADEON) consists of a single decoder that takes speech tokens as a condition and predicts text tokens in an autoregressive manner. To enhance MADEON, we further propose speech prefixing that performs bidirectional processing on speech tokens, which enriches the contextual information in the hidden states. Our experiments show that MADEON significantly outperforms a non-selective SSM. The combination of speech prefixing and the recently proposed Mamba-2 yields comparable performance to Transformer-based models on large datasets.
Recently, token-based generation have demonstrated their effectiveness in image synthesis. As a representative example, non-autoregressive Transformers (NATs) can generate decent-quality images in a few steps. NATs perform generation in a progressive manner, where the latent tokens of a resulting image are incrementally revealed. At each step, the unrevealed image regions are padded with mask tokens and inferred by NAT. In this paper, we delve into the mechanisms behind the effectiveness of NATs and uncover two important patterns that naturally emerge from NATs: Spatially (within a step), although mask and visible tokens are processed uniformly by NATs, the interactions between them are highly asymmetric. In specific, mask tokens mainly gather information for decoding, while visible tokens tend to primarily provide information, and their deep representations can be built only upon themselves. Temporally (across steps), the interactions between adjacent generation steps mostly concentrate on updating the representations of a few critical tokens, while the computation for the majority of tokens is generally repetitive. Driven by these findings, we propose EfficientNAT (ENAT), a NAT model that explicitly encourages these critical interactions inherent in NATs. At the spatial level, we disentangle the computations of visible and mask tokens by encoding visible tokens independently, while decoding mask tokens conditioned on the fully encoded visible tokens. At the temporal level, we prioritize the computation of the critical tokens at each step, while maximally reusing previously computed token representations to supplement necessary information. ENAT improves the performance of NATs notably with significantly reduced computational cost. Experiments on ImageNet-256, ImageNet-512 and MS-COCO validate the effectiveness of ENAT. Code is available at //github.com/LeapLabTHU/ENAT.
Swarm behaviour engineering is an area of research that seeks to investigate methods and techniques for coordinating computation and action within groups of simple agents to achieve complex global goals like pattern formation, collective movement, clustering, and distributed sensing. Despite recent progress in the analysis and engineering of swarms (of drones, robots, vehicles), there is still a need for general design and implementation methods and tools that can be used to define complex swarm behaviour in a principled way. To contribute to this quest, this article proposes a new field-based coordination approach, called MacroSwarm, to design and program swarm behaviour in terms of reusable and fully composable functional blocks embedding collective computation and coordination. Based on the macroprogramming paradigm of aggregate computing, MacroSwarm builds on the idea of expressing each swarm behaviour block as a pure function, mapping sensing fields into actuation goal fields, e.g., including movement vectors. In order to demonstrate the expressiveness, compositionality, and practicality of MacroSwarm as a framework for swarm programming, we perform a variety of simulations covering common patterns of flocking, pattern formation, and collective decision-making. The implications of the inherent self-stabilisation properties of field-based computations in MacroSwarm are discussed, which formally guarantee some resilience properties and guided the design of the library.
An efficient data structure is fundamental to meeting the growing demands in dynamic graph processing. However, the dual requirements for graph computation efficiency (with contiguous structures) and graph update efficiency (with linked list-like structures) present a conflict in the design principles of graph structures. After experimental studies of existing state-of-the-art dynamic graph structures, we observe that the overhead of cache misses accounts for a major portion of the graph computation time. This paper presents GastCoCo, a system with graph storage and coroutine-based prefetch co-design. By employing software prefetching via stackless coroutines and introducing a prefetch-friendly data structure CBList, GastCoCo significantly alleviates the performance degradation caused by cache misses. Our results show that GastCoCo outperforms state-of-the-art graph storage systems by 1.3x - 180x in graph updates and 1.4x - 41.1x in graph computation.
Previous research in the scientific field has utilized statistical empirical models and machine learning to address fitting challenges. While empirical models have the advantage of numerical generalization, they often sacrifice accuracy. However, conventional machine learning methods can achieve high precision but may lack the desired generalization. The article introduces a Regression-based Physics-Informed Neural Networks (Reg-PINNs), which embeds physics-inspired empirical models into the neural network's loss function, thereby combining the benefits of generalization and high accuracy. The study validates the proposed method using the magnetopause boundary location as the target and explores the feasibility of methods including Shue et al. [1998], a data overfitting model, a fully-connected networks, Reg-PINNs with Shue's model, and Reg-PINNs with the overfitting model. Compared to Shue's model, this technique achieves approximately a 30% reduction in RMSE, presenting a proof-of-concept improved solution for the scientific community.
The transition from monolithic architecture to microservices has enhanced flexibility in application design and its scalable execution. This approach often involves using a computing cluster managed by a container orchestration platform, which supports the deployment of microservices. However, this shift introduces significant challenges, particularly in the efficient scheduling of containerized services. These challenges are compounded by unpredictable scenarios such as dynamic incoming workloads with various execution traffic and variable communication delays among cluster nodes. Existing works often overlook the real-time traffic impacts of dynamic requests on running microservices, as well as the varied communication delays across cluster nodes. Consequently, even optimally deployed microservices could suffer from significant performance degradation over time. To address these issues, we introduce a network and traffic-aware adaptive scheduling framework, TraDE. This framework can adaptively redeploy microservice containers to maintain desired performance amid changing traffic and network conditions within the hosting cluster. We have implemented TraDE as an extension to the Kubernetes platform. Additionally, we deployed realistic microservice applications in a real compute cluster and conducted extensive experiments to assess our framework's performance in various scenarios. The results demonstrate the effectiveness of TraDE in rescheduling running microservices to enhance end-to-end performance while maintaining a high goodput ratio. Compared with the existing method NetMARKS, TraDE outperforms it by reducing the average response time of the application by up to 48.3\%, and improving the throughput by up to 1.4x while maintaining a goodput ratio of 95.36\% and showing robust adaptive capability under sustained workloads.
Knowledge-enhanced neural machine reasoning has garnered significant attention as a cutting-edge yet challenging research area with numerous practical applications. Over the past few years, plenty of studies have leveraged various forms of external knowledge to augment the reasoning capabilities of deep models, tackling challenges such as effective knowledge integration, implicit knowledge mining, and problems of tractability and optimization. However, there is a dearth of a comprehensive technical review of the existing knowledge-enhanced reasoning techniques across the diverse range of application domains. This survey provides an in-depth examination of recent advancements in the field, introducing a novel taxonomy that categorizes existing knowledge-enhanced methods into two primary categories and four subcategories. We systematically discuss these methods and highlight their correlations, strengths, and limitations. Finally, we elucidate the current application domains and provide insight into promising prospects for future research.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.