Closed drafting or "pick and pass" is a popular game mechanic where each round players select a card or other playable element from their hand and pass the rest to the next player. In this paper, we establish first-principle methods for studying the interpretability, generalizability, and memory of Deep Q-Network (DQN) models playing closed drafting games. In particular, we use a popular family of closed drafting games called "Sushi Go Party", in which we achieve state-of-the-art performance. We fit decision rules to interpret the decision-making strategy of trained DRL agents by comparing them to the ranking preferences of different types of human players. As Sushi Go Party can be expressed as a set of closely-related games based on the set of cards in play, we quantify the generalizability of DRL models trained on various sets of cards, establishing a method to benchmark agent performance as a function of environment unfamiliarity. Using the explicitly calculable memory of other player's hands in closed drafting games, we create measures of the ability of DRL models to learn memory.
In-Context Learning (ICL) is an important paradigm for adapting Large Language Models (LLMs) to downstream tasks through a few demonstrations. Despite the great success of ICL, the limitation of the demonstration number may lead to demonstration bias, i.e. the input-label mapping induced by LLMs misunderstands the task's essence. Inspired by human experience, we attempt to mitigate such bias through the perspective of the inter-demonstration relationship. Specifically, we construct Comparable Demonstrations (CDs) by minimally editing the texts to flip the corresponding labels, in order to highlight the task's essence and eliminate potential spurious correlations through the inter-demonstration comparison. Through a series of experiments on CDs, we find that (1) demonstration bias does exist in LLMs, and CDs can significantly reduce such bias; (2) CDs exhibit good performance in ICL, especially in out-of-distribution scenarios. In summary, this study explores the ICL mechanisms from a novel perspective, providing a deeper insight into the demonstration selection strategy for ICL.
We consider cost allocation for set covering problems. We allocate as much cost to the elements (players) as possible without violating the group rationality condition (no subset of players pays more than covering this subset would cost), and so that the excess vector is lexicographically maximized. This is identical to the well-known nucleolus if the core of the corresponding cooperative game is nonempty, i.e., if some optimum fractional cover is integral. In general, we call this the 'happy nucleolus'. Like for the nucleolus, the excess vector contains an entry for every subset of players, not only for the sets in the given set covering instance. Moreover, it is NP-hard to compute a single entry because this requires solving a set covering problem. Nevertheless, we give an explicit family of at most $mn$ subsets, each with a trivial cover (by a single set), such that the happy nucleolus is always completely determined by this proxy excess vector; here $m$ and $n$ denote the number of sets and the number of players in our set covering instance. We show that this is the unique minimal such family in a natural sense. While computing the nucleolus for set covering is NP-hard, our results imply that the happy nucleolus can be computed in polynomial time.
Recovering unknown, missing, damaged, distorted, or lost information in DCT coefficients is a common task in multiple applications of digital image processing, including image compression, selective image encryption, and image communication. This paper investigates the recovery of sign bits in DCT coefficients of digital images, by proposing two different approximation methods to solve a mixed integer linear programming (MILP) problem, which is NP-hard in general. One method is a relaxation of the MILP problem to a linear programming (LP) problem, and the other splits the original MILP problem into some smaller MILP problems and an LP problem. We considered how the proposed methods can be applied to JPEG-encoded images and conducted extensive experiments to validate their performances. The experimental results showed that the proposed methods outperformed other existing methods by a substantial margin, both according to objective quality metrics and our subjective evaluation.
We exhibit combinatorial results on Christoffel words and binary balanced words that are motivated by their geometric interpretation as approximations of digital segments. We show that for every pair $(a,b)$ of positive integers, all the binary balanced words with $a$ zeroes and $b$ ones are good approximations of the Euclidean segment from $(0,0)$ to $(a,b)$, in the sense that they encode paths that are contained within the region of the grid delimited by the lower and the upper Christoffel words of slope $b/a$. We then give a closed formula for counting the exact number of balanced words with $a$ zeroes and $b$ ones. We also study minimal non-balanced words and prefixes of Christoffel words.
Understanding and identifying musical shape plays an important role in music education and performance assessment. To simplify the otherwise time- and cost-intensive musical shape evaluation, in this paper we explore how artificial intelligence (AI) driven models can be applied. Considering musical shape evaluation as a classification problem, a light-weight Siamese residual neural network (S-ResNN) is proposed to automatically identify musical shapes. To assess the proposed approach in the context of piano musical shape evaluation, we have generated a new dataset, containing 4116 music pieces derived by 147 piano preparatory exercises and performed in 28 categories of musical shapes. The experimental results show that the S-ResNN significantly outperforms a number of benchmark methods in terms of the precision, recall and F1 score.
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.
Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.
Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.