亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present approximation algorithms for the Fault-tolerant $k$-Supplier with Outliers ($\mathsf{F}k\mathsf{SO}$) problem. This is a common generalization of two known problems -- $k$-Supplier with Outliers, and Fault-tolerant $k$-Supplier -- each of which generalize the well-known $k$-Supplier problem. In the $k$-Supplier problem the goal is to serve $n$ clients $C$, by opening $k$ facilities from a set of possible facilities $F$; the objective function is the farthest that any client must travel to access an open facility. In $\mathsf{F}k\mathsf{SO}$, each client $v$ has a fault-tolerance $\ell_v$, and now desires $\ell_v$ facilities to serve it; so each client $v$'s contribution to the objective function is now its distance to the $\ell_v^{\text{th}}$ closest open facility. Furthermore, we are allowed to choose $m$ clients that we will serve, and only those clients contribute to the objective function, while the remaining $n-m$ are considered outliers. Our main result is a $\min\{4t-1,2^t+1\}$-approximation for the $\mathsf{F}k\mathsf{SO}$ problem, where $t$ is the number of distinct values of $\ell_v$ that appear in the instance. At $t=1$, i.e. in the case where the $\ell_v$'s are uniformly some $\ell$, this yields a $3$-approximation, improving upon the $11$-approximation given for the uniform case by Inamdar and Varadarajan [2020], who also introduced the problem. Our result for the uniform case matches tight $3$-approximations that exist for $k$-Supplier, $k$-Supplier with Outliers, and Fault-tolerant $k$-Supplier. Our key technical contribution is an application of the round-or-cut schema to $\mathsf{F}k\mathsf{SO}$. Guided by an LP relaxation, we reduce to a simpler optimization problem, which we can solve to obtain distance bounds for the "round" step, and valid inequalities for the "cut" step.

相關內容

Given two $n$-element structures, $\mathcal{A}$ and $\mathcal{B}$, which can be distinguished by a sentence of $k$-variable first-order logic ($\mathcal{L}^k$), what is the minimum $f(n)$ such that there is guaranteed to be a sentence $\phi \in \mathcal{L}^k$ with at most $f(n)$ quantifiers, such that $\mathcal{A} \models \phi$ but $\mathcal{B} \not \models \phi$? We will present various results related to this question obtained by using the recently introduced QVT games. In particular, we show that when we limit the number of variables, there can be an exponential gap between the quantifier depth and the quantifier number needed to separate two structures. Through the lens of this question, we will highlight some difficulties that arise in analysing the QVT game and some techniques which can help to overcome them. We also show, in the setting of the existential-positive fragment, how to lift quantifier depth lower bounds to quantifier number lower bounds. This leads to almost tight bounds.

We consider the gradient descent flow widely used for the minimization of the $\mathcal{L}^2$ cost function in Deep Learning networks, and introduce two modified versions; one adapted for the overparametrized setting, and the other for the underparametrized setting. Both have a clear and natural invariant geometric meaning, taking into account the pullback vector bundle structure in the overparametrized, and the pushforward vector bundle structure in the underparametrized setting. In the overparametrized case, we prove that, provided that a rank condition holds, all orbits of the modified gradient descent drive the $\mathcal{L}^2$ cost to its global minimum at a uniform exponential convergence rate. We point out relations of the latter to sub-Riemannian geometry.

A one-dimensional sequence $u_0, u_1, u_2, \ldots \in [0, 1)$ is said to be completely uniformly distributed (CUD) if overlapping $s$-blocks $(u_i, u_{i+1}, \ldots , u_{i+s-1})$, $i = 0, 1, 2, \ldots$, are uniformly distributed for every dimension $s \geq 1$. This concept naturally arises in Markov chain quasi-Monte Carlo (QMC). However, the definition of CUD sequences is not constructive, and thus there remains the problem of how to implement the Markov chain QMC algorithm in practice. Harase (2021) focused on the $t$-value, which is a measure of uniformity widely used in the study of QMC, and implemented short-period Tausworthe generators (i.e., linear feedback shift register generators) over the two-element field $\mathbb{F}_2$ that approximate CUD sequences by running for the entire period. In this paper, we generalize a search algorithm over $\mathbb{F}_2$ to that over arbitrary finite fields $\mathbb{F}_b$ with $b$ elements and conduct a search for Tausworthe generators over $\mathbb{F}_b$ with $t$-values zero (i.e., optimal) for dimension $s = 3$ and small for $s \geq 4$, especially in the case where $b = 3, 4$, and $5$. We provide a parameter table of Tausworthe generators over $\mathbb{F}_4$, and report a comparison between our new generators over $\mathbb{F}_4$ and existing generators over $\mathbb{F}_2$ in numerical examples using Markov chain QMC.

We propose a threshold-type algorithm to the $L^2$-gradient flow of the Canham-Helfrich functional generalized to $\mathbb{R}^N$. The algorithm to the Willmore flow is derived as a special case in $\mathbb{R}^2$ or $\mathbb{R}^3$. This algorithm is constructed based on an asymptotic expansion of the solution to the initial value problem for a fourth order linear parabolic partial differential equation whose initial data is the indicator function on the compact set $\Omega_0$. The crucial points are to prove that the boundary $\partial\Omega_1$ of the new set $\Omega_1$ generated by our algorithm is included in $O(t)$-neighborhood from $\partial\Omega_0$ for small time $t>0$ and to show that the derivative of the threshold function in the normal direction for $\partial\Omega_0$ is far from zero in the small time interval. Finally, numerical examples of planar curves governed by the Willmore flow are provided by using our threshold-type algorithm.

We provide a simple $(1-O(\frac{1}{\sqrt{k}}))$-selectable Online Contention Resolution Scheme for $k$-uniform matroids against a fixed-order adversary. If $A_i$ and $G_i$ denote the set of selected elements and the set of realized active elements among the first $i$ (respectively), our algorithm selects with probability $1-\frac{1}{\sqrt{k}}$ any active element $i$ such that $|A_{i-1}| + 1 \leq (1-\frac{1}{\sqrt{k}})\cdot \mathbb{E}[|G_i|]+\sqrt{k}$. This implies a $(1-O(\frac{1}{\sqrt{k}}))$ prophet inequality against fixed-order adversaries for $k$-uniform matroids that is considerably simpler than previous algorithms [Ala14, AKW14, JMZ22]. We also prove that no OCRS can be $(1-\Omega(\sqrt{\frac{\log k}{k}}))$-selectable for $k$-uniform matroids against an almighty adversary. This guarantee is matched by the (known) simple greedy algorithm that accepts every active element with probability $1-\Theta(\sqrt{\frac{\log k}{k}})$ [HKS07].

Based on the theory of homogeneous spaces we derive \textit{geometrically optimal edge attributes} to be used within the flexible message passing framework. We formalize the notion of weight sharing in convolutional networks as the sharing of message functions over point-pairs that should be treated equally. We define equivalence classes of point-pairs that are identical up to a transformation in the group and derive attributes that uniquely identify these classes. Weight sharing is then obtained by conditioning message functions on these attributes. As an application of the theory, we develop an efficient equivariant group convolutional network for processing 3D point clouds. The theory of homogeneous spaces tells us how to do group convolutions with feature maps over the homogeneous space of positions $\mathbb{R}^3$, position and orientations $\mathbb{R}^3 {\times} S^2$, and the group SE$(3)$ itself. Among these, $\mathbb{R}^3 {\times} S^2$ is an optimal choice due to the ability to represent directional information, which $\mathbb{R}^3$ methods cannot, and it significantly enhances computational efficiency compared to indexing features on the full SE$(3)$ group. We empirically support this claim by reaching state-of-the-art results -- in accuracy and speed -- on three different benchmarks: interatomic potential energy prediction, trajectory forecasting in N-body systems, and generating molecules via equivariant diffusion models.

We present an algorithm that finds a maximum cardinality $f$-matching of a simple graph in time $O(n^{2/3} m)$. Here $f:V\to \mathbb{N}$ is a given function, and an $f$-matching is a subgraph wherein each vertex $v\in V$ has degree $\le f(v)$. This result generalizes a string of algorithms, concentrating on simple bipartite graphs. The bipartite case is based on the notion of level graph, introduced by Dinic for network flow. For general graphs the ``level'' of a vertex is unclear: A given vertex can occur on many different levels in augmenting trails. In fact there does not seem to be a unique level graph, our notion of level graph depends on the trails being analyzed. Our analysis presents new properties of blossoms of shortest augmenting trails. Our algorithm, unmodified, is also efficient on multigraphs, achieving time $O(\min \{\sqrt {f(V)}, n\}\,m)$, for $f(V)=\sum_vf(v)$.

$k$-clique listing is a vital graph mining operator with diverse applications in various networks. The state-of-the-art algorithms all adopt a branch-and-bound (BB) framework with a vertex-oriented branching strategy (called VBBkC), which forms a sub-branch by expanding a partial $k$-clique with a vertex. These algorithms have the time complexity of $O(k m (\delta/2)^{k-2})$, where $m$ is the number of edges in the graph and $\delta$ is the degeneracy of the graph. In this paper, we propose a BB framework with a new edge-oriented branching (called EBBkC), which forms a sub-branch by expanding a partial $k$-clique with two vertices that connect each other (which correspond to an edge). We explore various edge orderings for EBBkC such that it achieves a time complexity of $O(\delta m + k m (\tau/2)^{k-2})$, where $\tau$ is an integer related to the maximum truss number of the graph and we have $\tau < \delta$. The time complexity of EBBkC is better than that of VBBkC algorithms for $k>3$ since both $O(\delta m)$ and $O(k m (\tau/2)^{k-2})$ are bounded by $O(k m (\delta/2)^{k-2})$. Furthermore, we develop specialized algorithms for sub-branches on dense graphs so that we can early-terminate them and apply the specialized algorithms. We conduct extensive experiments on 19 real graphs, and the results show that our newly developed EBBkC-based algorithms with the early termination technique consistently and largely outperform the state-of-the-art (VBBkC-based) algorithms.

A method for computing the Riesz $\alpha$-capacity, $0 < \alpha \le 2$, of a general set $K \subset \mathbb{R}^d$ is given. The method is based on simulations of isotropic $\alpha$-stable motion paths in $d$-dimensions. The familiar Walk-On-Spheres method, often utilized for simulating Brownian motion, is modified to a novel Walk-In-Out-Balls method adapted for modeling the stable path process on the exterior of regions ``probed'' by this type of generalized random walk. It accounts for the propensity of this class of random walk to jump through boundaries because of the path discontinuity. This method allows for the computationally efficient simulation of hitting locations of stable paths launched from the exterior of probed sets. Reliable methods of computing capacity from these locations are given, along with non-standard confidence intervals. Illustrative calculations are performed for representative types of sets K, where both $\alpha$ and $d$ are varied.

A recent line of work has shown the unconditional advantage of constant-depth quantum computation, or $\mathsf{QNC^0}$, over $\mathsf{NC^0}$, $\mathsf{AC^0}$, and related models of classical computation. Problems exhibiting this advantage include search and sampling tasks related to the parity function, and it is natural to ask whether $\mathsf{QNC^0}$ can be used to help compute parity itself. We study $\mathsf{AC^0\circ QNC^0}$ -- a hybrid circuit model where $\mathsf{AC^0}$ operates on measurement outcomes of a $\mathsf{QNC^0}$ circuit, and conjecture $\mathsf{AC^0\circ QNC^0}$ cannot even achieve $\Omega(1)$ correlation with parity. As evidence for this conjecture, we prove: $\bullet$ When the $\mathsf{QNC^0}$ circuit is ancilla-free, this model achieves only negligible correlation with parity. $\bullet$ For the general (non-ancilla-free) case, we show via a connection to nonlocal games that the conjecture holds for any class of postprocessing functions that has approximate degree $o(n)$ and is closed under restrictions, even when the $\mathsf{QNC^0}$ circuit is given arbitrary quantum advice. By known results this confirms the conjecture for linear-size $\mathsf{AC^0}$ circuits. $\bullet$ Towards the a switching lemma for $\mathsf{AC^0\circ QNC^0}$, we study the effect of quantum preprocessing on the decision tree complexity of Boolean functions. We find that from this perspective, nonlocal channels are no better than randomness: a Boolean function $f$ precomposed with an $n$-party nonlocal channel is together equal to a randomized decision tree with worst-case depth at most $\mathrm{DT}_\mathrm{depth}[f]$. Our results suggest that while $\mathsf{QNC^0}$ is surprisingly powerful for search and sampling, that power is "locked away" in the global correlations of its output, inaccessible to simple classical computation for solving decision problems.

北京阿比特科技有限公司