The $k$-means algorithm is a prevalent clustering method due to its simplicity, effectiveness, and speed. However, its main disadvantage is its high sensitivity to the initial positions of the cluster centers. The global $k$-means is a deterministic algorithm proposed to tackle the random initialization problem of k-means but its well-known that requires high computational cost. It partitions the data to $K$ clusters by solving all $k$-means sub-problems incrementally for all $k=1,\ldots, K$. For each $k$ cluster problem, the method executes the $k$-means algorithm $N$ times, where $N$ is the number of datapoints. In this paper, we propose the \emph{global $k$-means\texttt{++}} clustering algorithm, which is an effective way of acquiring quality clustering solutions akin to those of global $k$-means with a reduced computational load. This is achieved by exploiting the center selection probability that is effectively used in the $k$-means\texttt{++} algorithm. The proposed method has been tested and compared in various benchmark datasets yielding very satisfactory results in terms of clustering quality and execution speed.
Stochastic optimization methods have been hugely successful in making large-scale optimization problems feasible when computing the full gradient is computationally prohibitive. Using the theory of modified equations for numerical integrators, we propose a class of stochastic differential equations that approximate the dynamics of general stochastic optimization methods more closely than the original gradient flow. Analyzing a modified stochastic differential equation can reveal qualitative insights about the associated optimization method. Here, we study mean-square stability of the modified equation in the case of stochastic coordinate descent.
We show that for log-concave real random variables with fixed variance the Shannon differential entropy is minimized for an exponential random variable. We apply this result to derive upper bounds on capacities of additive noise channels with log-concave noise. We also improve constants in the reverse entropy power inequalities for log-concave random variables.
The analysis of a delayed generalized Burgers-Huxley equation (a non-linear advection-diffusion-reaction problem) with weakly singular kernels is carried out in this work. Moreover, numerical approximations are performed using the conforming finite element method (CFEM). The existence, uniqueness and regularity results for the continuous problem have been discussed in detail using the Faedo-Galerkin approximation technique. For the numerical studies, we first propose a semi-discrete conforming finite element scheme for space discretization and discuss its error estimates under minimal regularity assumptions. We then employ a backward Euler discretization in time and CFEM in space to obtain a fully-discrete approximation. Additionally, we derive a prior error estimates for the fully-discrete approximated solution. Finally, we present computational results that support the derived theoretical results.
We extend the error bounds from [SIMAX, Vol. 43, Iss. 2, pp. 787-811 (2022)] for the Lanczos method for matrix function approximation to the block algorithm. Numerical experiments suggest that our bounds are fairly robust to changing block size and have the potential for use as a practical stopping criteria. Further experiments work towards a better understanding of how certain hyperparameters should be chosen in order to maximize the quality of the error bounds, even in the previously studied block-size one case.
Multivariate imputation by chained equations (MICE) is one of the most popular approaches to address missing values in a data set. This approach requires specifying a univariate imputation model for every variable under imputation. The specification of which predictors should be included in these univariate imputation models can be a daunting task. Principal component analysis (PCA) can simplify this process by replacing all of the potential imputation model predictors with a few components summarizing their variance. In this article, we extend the use of PCA with MICE to include a supervised aspect whereby information from the variables under imputation is incorporated into the principal component estimation. We conducted an extensive simulation study to assess the statistical properties of MICE with different versions of supervised dimensionality reduction and we compared them with the use of classical unsupervised PCA as a simpler dimensionality reduction technique.
We consider the minimal thermodynamic cost of an individual computation, where a single input $x$ is mapped to a single output $y$. In prior work, Zurek proposed that this cost was given by $K(x\vert y)$, the conditional Kolmogorov complexity of $x$ given $y$ (up to an additive constant which does not depend on $x$ or $y$). However, this result was derived from an informal argument, applied only to deterministic computations, and had an arbitrary dependence on the choice of protocol (via the additive constant). Here we use stochastic thermodynamics to derive a generalized version of Zurek's bound from a rigorous Hamiltonian formulation. Our bound applies to all quantum and classical processes, whether noisy or deterministic, and it explicitly captures the dependence on the protocol. We show that $K(x\vert y)$ is a minimal cost of mapping $x$ to $y$ that must be paid using some combination of heat, noise, and protocol complexity, implying a tradeoff between these three resources. Our result is a kind of "algorithmic fluctuation theorem" with implications for the relationship between the Second Law and the Physical Church-Turing thesis.
Ordinary differential equations (ODEs), via their induced flow maps, provide a powerful framework to parameterize invertible transformations for the purpose of representing complex probability distributions. While such models have achieved enormous success in machine learning, particularly for generative modeling and density estimation, little is known about their statistical properties. This work establishes the first general nonparametric statistical convergence analysis for distribution learning via ODE models trained through likelihood maximization. We first prove a convergence theorem applicable to arbitrary velocity field classes $\mathcal{F}$ satisfying certain simple boundary constraints. This general result captures the trade-off between approximation error (`bias') and the complexity of the ODE model (`variance'). We show that the latter can be quantified via the $C^1$-metric entropy of the class $\mathcal F$. We then apply this general framework to the setting of $C^k$-smooth target densities, and establish nearly minimax-optimal convergence rates for two relevant velocity field classes $\mathcal F$: $C^k$ functions and neural networks. The latter is the practically important case of neural ODEs. Our proof techniques require a careful synthesis of (i) analytical stability results for ODEs, (ii) classical theory for sieved M-estimators, and (iii) recent results on approximation rates and metric entropies of neural network classes. The results also provide theoretical insight on how the choice of velocity field class, and the dependence of this choice on sample size $n$ (e.g., the scaling of width, depth, and sparsity of neural network classes), impacts statistical performance.
We consider the coupled system of the Landau--Lifshitz--Gilbert equation and the conservation of linear momentum law to describe magnetic processes in ferromagnetic materials including magnetoelastic effects in the small-strain regime. For this nonlinear system of time-dependent partial differential equations, we present a decoupled integrator based on first-order finite elements in space and an implicit one-step method in time. We prove unconditional convergence of the sequence of discrete approximations towards a weak solution of the system as the mesh size and the time-step size go to zero. Compared to previous numerical works on this problem, for our method, we prove a discrete energy law that mimics that of the continuous problem and, passing to the limit, yields an energy inequality satisfied by weak solutions. Moreover, our method does not employ a nodal projection to impose the unit length constraint on the discrete magnetisation, so that the stability of the method does not require weakly acute meshes. Furthermore, our integrator and its analysis hold for a more general setting, including body forces and traction, as well as a more general representation of the magnetostrain. Numerical experiments underpin the theory and showcase the applicability of the scheme for the simulation of the dynamical processes involving magnetoelastic materials at submicrometer length scales.
We derive an intuitionistic version of G\"odel-L\"ob modal logic ($\sf{GL}$) in the style of Simpson, via proof theoretic techniques. We recover a labelled system, $\sf{\ell IGL}$, by restricting a non-wellfounded labelled system for $\sf{GL}$ to have only one formula on the right. The latter is obtained using techniques from cyclic proof theory, sidestepping the barrier that $\sf{GL}$'s usual frame condition (converse well-foundedness) is not first-order definable. While existing intuitionistic versions of $\sf{GL}$ are typically defined over only the box (and not the diamond), our presentation includes both modalities. Our main result is that $\sf{\ell IGL}$ coincides with a corresponding semantic condition in birelational semantics: the composition of the modal relation and the intuitionistic relation is conversely well-founded. We call the resulting logic $\sf{IGL}$. While the soundness direction is proved using standard ideas, the completeness direction is more complex and necessitates a detour through several intermediate characterisations of $\sf{IGL}$.
A standard approach to solve ordinary differential equations, when they describe dynamical systems, is to adopt a Runge-Kutta or related scheme. Such schemes, however, are not applicable to the large class of equations which do not constitute dynamical systems. In several physical systems, we encounter integro-differential equations with memory terms where the time derivative of a state variable at a given time depends on all past states of the system. Secondly, there are equations whose solutions do not have well-defined Taylor series expansion. The Maxey-Riley-Gatignol equation, which describes the dynamics of an inertial particle in nonuniform and unsteady flow, displays both challenges. We use it as a test bed to address the questions we raise, but our method may be applied to all equations of this class. We show that the Maxey-Riley-Gatignol equation can be embedded into an extended Markovian system which is constructed by introducing a new dynamical co-evolving state variable that encodes memory of past states. We develop a Runge-Kutta algorithm for the resultant Markovian system. The form of the kernels involved in deriving the Runge-Kutta scheme necessitates the use of an expansion in powers of $t^{1/2}$. Our approach naturally inherits the benefits of standard time-integrators, namely a constant memory storage cost, a linear growth of operational effort with simulation time, and the ability to restart a simulation with the final state as the new initial condition.