亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the last fall degrees of {\em semi-local} polynomial systems, and the computational complexity of solving such systems for closed-point and rational-point solutions, where the systems are defined over a finite field. A semi-local polynomial system specifies an algebraic set which is the image of a global linear transformation of a direct product of local affine algebraic sets. As a special but interesting case, polynomial systems that arise from Weil restriction of algebraic sets in an affine space of low dimension are semi-local. Such systems have received considerable attention due to their application in cryptography. Our main results bound the last fall degree of a semi-local polynomial system in terms of the number of closed point solutions, and yield an efficient algorithm for finding all rational-point solutions when the prime characteristic of the finite field and the number of rational solutions are small. Our results on solving semi-local systems imply an improvement on a previously known polynomial-time attack on the HFE (Hidden Field Equations) cryptosystems. The attacks implied in our results extend to public key encryption functions which are based on semi-local systems where either the number of closed point solutions is small, or the characteristic of the field is small. It remains plausible to construct public key cryptosystems based on semi-local systems over a finite field of large prime characteristic with exponential number of closed point solutions. Such a method is presented in the paper, followed by further cryptanalysis involving the isomorphism of polynomials (IP) problem, as well as a concrete public key encryption scheme which is secure against all the attacks discussed in this paper.

相關內容

CC在計算復雜性方面表現突出。它的學科處于數學與計算機理論科學的交叉點,具有清晰的數學輪廓和嚴格的數學格式。官網鏈接: · 相互獨立的 · 樣例 · 近似 · 講稿 ·
2023 年 12 月 22 日

We present an isogeometric collocation method for solving the biharmonic equation over planar bilinearly parameterized multi-patch domains. The developed approach is based on the use of the globally $C^4$-smooth isogeometric spline space [34] to approximate the solution of the considered partial differential equation, and proposes as collocation points two different choices, namely on the one hand the Greville points and on the other hand the so-called superconvergent points. Several examples demonstrate the potential of our collocation method for solving the biharmonic equation over planar multi-patch domains, and numerically study the convergence behavior of the two types of collocation points with respect to the $L^2$-norm as well as to equivalents of the $H^s$-seminorms for $1 \leq s \leq 4$. In the studied case of spline degree $p=9$, the numerical results indicate in case of the Greville points a convergence of order $\mathcal{O}(h^{p-3})$ independent of the considered (semi)norm, and show in case of the superconvergent points an improved convergence of order $\mathcal{O}(h^{p-2})$ for all (semi)norms except for the equivalent of the $H^4$-seminorm, where the order $\mathcal{O}(h^{p-3})$ is anyway optimal.

Dependence is undoubtedly a central concept in statistics. Though, it proves difficult to locate in the literature a formal definition which goes beyond the self-evident 'dependence = non-independence'. This absence has allowed the term 'dependence' and its declination to be used vaguely and indiscriminately for qualifying a variety of disparate notions, leading to numerous incongruities. For example, the classical Pearson's, Spearman's or Kendall's correlations are widely regarded as 'dependence measures' of major interest, in spite of returning 0 in some cases of deterministic relationships between the variables at play, evidently not measuring dependence at all. Arguing that research on such a fundamental topic would benefit from a slightly more rigid framework, this paper suggests a general definition of the dependence between two random variables defined on the same probability space. Natural enough for aligning with intuition, that definition is still sufficiently precise for allowing unequivocal identification of a 'universal' representation of the dependence structure of any bivariate distribution. Links between this representation and familiar concepts are highlighted, and ultimately, the idea of a dependence measure based on that universal representation is explored and shown to satisfy Renyi's postulates.

Many interesting physical problems described by systems of hyperbolic conservation laws are stiff, and thus impose a very small time-step because of the restrictive CFL stability condition. In this case, one can exploit the superior stability properties of implicit time integration which allows to choose the time-step only from accuracy requirements, and thus avoid the use of small time-steps. We discuss an efficient framework to devise high order implicit schemes for stiff hyperbolic systems without tailoring it to a specific problem. The nonlinearity of high order schemes, due to space- and time-limiting procedures which control nonphysical oscillations, makes the implicit time integration difficult, e.g.~because the discrete system is nonlinear also on linear problems. This nonlinearity of the scheme is circumvented as proposed in (Puppo et al., Comm.~Appl.~Math.~\& Comput., 2023) for scalar conservation laws, where a first order implicit predictor is computed to freeze the nonlinear coefficients of the essentially non-oscillatory space reconstruction, and also to assist limiting in time. In addition, we propose a novel conservative flux-centered a-posteriori time-limiting procedure using numerical entropy indicators to detect troubled cells. The numerical tests involve classical and artificially devised stiff problems using the Euler's system of gas-dynamics.

Transformers play a central role in the inner workings of large language models. We develop a mathematical framework for analyzing Transformers based on their interpretation as interacting particle systems, which reveals that clusters emerge in long time. Our study explores the underlying theory and offers new perspectives for mathematicians as well as computer scientists.

Nowadays, machine learning algorithms continue to grow in complexity and require a substantial amount of computational resources and energy. For these reasons, there is a growing awareness of the development of new green algorithms and distributed AI can contribute to this. Federated learning (FL) is one of the most active research lines in machine learning, as it allows the training of collaborative models in a distributed way, an interesting option in many real-world environments, such as the Internet of Things, allowing the use of these models in edge computing devices. In this work, we present a FL method, based on a neural network without hidden layers, capable of generating a global collaborative model in a single training round, unlike traditional FL methods that require multiple rounds for convergence. This allows obtaining an effective and efficient model that simplifies the management of the training process. Moreover, this method preserve data privacy by design, a crucial aspect in current data protection regulations. We conducted experiments with large datasets and a large number of federated clients. Despite being based on a network model without hidden layers, it maintains in all cases competitive accuracy results compared to more complex state-of-the-art machine learning models. Furthermore, we show that the method performs equally well in both identically and non-identically distributed scenarios. Finally, it is an environmentally friendly algorithm as it allows significant energy savings during the training process compared to its centralized counterpart.

This work studies nonparametric Bayesian estimation of the intensity function of an inhomogeneous Poisson point process in the important case where the intensity depends on covariates, based on the observation of a single realisation of the point pattern over a large area. It is shown how the presence of covariates allows to borrow information from far away locations in the observation window, enabling consistent inference in the growing domain asymptotics. In particular, optimal posterior contraction rates under both global and point-wise loss functions are derived. The rates in global loss are obtained under conditions on the prior distribution resembling those in the well established theory of Bayesian nonparametrics, here combined with concentration inequalities for functionals of stationary processes to control certain random covariate-dependent loss functions appearing in the analysis. The local rates are derived with an ad-hoc study that builds on recent advances in the theory of P\'olya tree priors, extended to the present multivariate setting with a novel construction that makes use of the random geometry induced by the covariates.

Partitioned neural network functions are used to approximate the solution of partial differential equations. The problem domain is partitioned into non-overlapping subdomains and the partitioned neural network functions are defined on the given non-overlapping subdomains. Each neural network function then approximates the solution in each subdomain. To obtain the convergent neural network solution, certain continuity conditions on the partitioned neural network functions across the subdomain interface need to be included in the loss function, that is used to train the parameters in the neural network functions. In our work, by introducing suitable interface values, the loss function is reformulated into a sum of localized loss functions and each localized loss function is used to train the corresponding local neural network parameters. In addition, to accelerate the neural network solution convergence, the localized loss function is enriched with an augmented Lagrangian term, where the interface condition and the boundary condition are enforced as constraints on the local solutions by using Lagrange multipliers. The local neural network parameters and Lagrange multipliers are then found by optimizing the localized loss function. To take the advantage of the localized loss function for the parallel computation, an iterative algorithm is also proposed. For the proposed algorithms, their training performance and convergence are numerically studied for various test examples.

Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

北京阿比特科技有限公司