亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Attacks exploiting human attentional vulnerability have posed severe threats to cybersecurity. In this work, we identify and formally define a new type of proactive attentional attacks called Informational Denial-of-Service (IDoS) attacks that generate a large volume of feint attacks to overload human operators and hide real attacks among feints. We incorporate human factors (e.g., levels of expertise, stress, and efficiency) and empirical results (e.g., the Yerkes-Dodson law and the sunk cost fallacy) to model the operators' attention dynamics and their decision-making processes along with the real-time alert monitoring and inspection. To assist human operators in timely and accurately dismissing the feints and escalating the real attacks, we develop a Resilient and Adaptive Data-driven alert and Attention Management Strategy (RADAMS) that de-emphasizes alerts selectively based on the alerts' observable features. RADAMS uses reinforcement learning to achieve a customized and transferable design for various human operators and evolving IDoS attacks. The integrated modeling and theoretical analysis lead to the Product Principle of Attention (PPoA), fundamental limits, and the tradeoff among crucial human and economic factors. Experimental results corroborate that the proposed strategy outperforms the default strategy and can reduce the IDoS risk by as much as 20%. Besides, the strategy is resilient to large variations of costs, attack frequencies, and human attention capacities. We have recognized interesting phenomena such as attentional risk equivalency, attacker's dilemma, and the half-truth optimal attack strategy.

相關內容

 Attention機制最早是在視覺圖像領域提出來的,但是真正火起來應該算是google mind團隊的這篇論文《Recurrent Models of Visual Attention》[14],他們在RNN模型上使用了attention機制來進行圖像分類。隨后,Bahdanau等人在論文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用類似attention的機制在機器翻譯任務上將翻譯和對齊同時進行,他們的工作算是是第一個提出attention機制應用到NLP領域中。接著類似的基于attention機制的RNN模型擴展開始應用到各種NLP任務中。最近,如何在CNN中使用attention機制也成為了大家的研究熱點。下圖表示了attention研究進展的大概趨勢。

We live in a virtual world where actual lifestyles are replicated. The growing reliance on the use of social media networks worldwide has resulted in great concern for information security. One of the factors popularizing the social media platforms is how they connect people worldwide to interact, share content, and engage in mutual interactions of common interest that cut across geographical boundaries. Behind all these incredible gains are digital crime equivalence that threatens the physical socialization. Criminal-minded elements and hackers are exploiting Social Media Platforms (SMP) for many nefarious activities to harm others. As detection tools are developed to control these crimes, hackers' tactics and techniques are constantly evolving. Hackers are constantly developing new attacking tools and hacking strategies to gain malicious access to systems and attack social media network thereby making it difficult for security administrators and organizations to develop and implement the proper policies and procedures necessary to prevent the hackers' attacks. The increase in cyber-attacks on the social media platforms calls for urgent and more intelligent security measures to enhance the effectiveness of social media platforms. This paper explores the mode and tactics of hackers' mode of attacks on social media and ways of preventing their activities against users to ensure secure social cyberspace and enhance virtual socialization. Social media platforms are briefly categorized, the various types of attacks are also highlighted with current state-of-the-art preventive mechanisms to overcome the attacks as proposed in research works, finally, social media intrusion detection mechanism is suggested as a second line of defense to combat cybercrime on social media networks

Side-channel analysis attacks, especially horizontal DPA and DEMA attacks, are significant threats for cryptographic designs. In this paper we investigate to which extend different multiplication formulae and randomization of the field multiplier increase the resistance of an ECC design against horizontal attacks. We implemented a randomized sequence of the calculation of partial products for the field multiplication in order to increase the security features of the field multiplier. Additionally, we use the partial polynomial multiplier itself as a kind of countermeasure against DPA attacks. We demonstrate that the implemented classical multiplication formula can increase the inherent resistance of the whole ECC design. We also investigate the impact of the combination of these two approaches. For the evaluation we synthesized all these designs for a 250 nm gate library technologies, and analysed the simulated power traces. All investigated protection means help to decrease the success rate of attacks significantly: the correctness of the revealed key was decreased from 99% to 69%.

Segmentation models have been found to be vulnerable to targeted and non-targeted adversarial attacks. However, the resulting segmentation outputs are often so damaged that it is easy to spot an attack. In this paper, we propose semantically stealthy adversarial attacks which can manipulate targeted labels while preserving non-targeted labels at the same time. One challenge is making semantically meaningful manipulations across datasets and models. Another challenge is avoiding damaging non-targeted labels. To solve these challenges, we consider each input image as prior knowledge to generate perturbations. We also design a special regularizer to help extract features. To evaluate our model's performance, we design three basic attack types, namely `vanishing into the context,' `embedding fake labels,' and `displacing target objects.' Our experiments show that our stealthy adversarial model can attack segmentation models with a relatively high success rate on Cityscapes, Mapillary, and BDD100K. Our framework shows good empirical generalization across datasets and models.

Advances in deep learning have enabled a wide range of promising applications. However, these systems are vulnerable to Adversarial Machine Learning (AML) attacks; adversarially crafted perturbations to their inputs could cause them to misclassify. Several state-of-the-art adversarial attacks have demonstrated that they can reliably fool classifiers making these attacks a significant threat. Adversarial attack generation algorithms focus primarily on creating successful examples while controlling the noise magnitude and distribution to make detection more difficult. The underlying assumption of these attacks is that the adversarial noise is generated offline, making their execution time a secondary consideration. However, recently, just-in-time adversarial attacks where an attacker opportunistically generates adversarial examples on the fly have been shown to be possible. This paper introduces a new problem: how do we generate adversarial noise under real-time constraints to support such real-time adversarial attacks? Understanding this problem improves our understanding of the threat these attacks pose to real-time systems and provides security evaluation benchmarks for future defenses. Therefore, we first conduct a run-time analysis of adversarial generation algorithms. Universal attacks produce a general attack offline, with no online overhead, and can be applied to any input; however, their success rate is limited because of their generality. In contrast, online algorithms, which work on a specific input, are computationally expensive, making them inappropriate for operation under time constraints. Thus, we propose ROOM, a novel Real-time Online-Offline attack construction Model where an offline component serves to warm up the online algorithm, making it possible to generate highly successful attacks under time constraints.

Data-driven AI systems can lead to discrimination on the basis of protected attributes like gender or race. One reason for this behavior is the encoded societal biases in the training data (e.g., females are underrepresented), which is aggravated in the presence of unbalanced class distributions (e.g., "granted" is the minority class). State-of-the-art fairness-aware machine learning approaches focus on preserving the \emph{overall} classification accuracy while improving fairness. In the presence of class-imbalance, such methods may further aggravate the problem of discrimination by denying an already underrepresented group (e.g., \textit{females}) the fundamental rights of equal social privileges (e.g., equal credit opportunity). To this end, we propose AdaFair, a fairness-aware boosting ensemble that changes the data distribution at each round, taking into account not only the class errors but also the fairness-related performance of the model defined cumulatively based on the partial ensemble. Except for the in-training boosting of the group discriminated over each round, AdaFair directly tackles imbalance during the post-training phase by optimizing the number of ensemble learners for balanced error performance (BER). AdaFair can facilitate different parity-based fairness notions and mitigate effectively discriminatory outcomes. Our experiments show that our approach can achieve parity in terms of statistical parity, equal opportunity, and disparate mistreatment while maintaining good predictive performance for all classes.

In the past few decades, artificial intelligence (AI) technology has experienced swift developments, changing everyone's daily life and profoundly altering the course of human society. The intention of developing AI is to benefit humans, by reducing human labor, bringing everyday convenience to human lives, and promoting social good. However, recent research and AI applications show that AI can cause unintentional harm to humans, such as making unreliable decisions in safety-critical scenarios or undermining fairness by inadvertently discriminating against one group. Thus, trustworthy AI has attracted immense attention recently, which requires careful consideration to avoid the adverse effects that AI may bring to humans, so that humans can fully trust and live in harmony with AI technologies. Recent years have witnessed a tremendous amount of research on trustworthy AI. In this survey, we present a comprehensive survey of trustworthy AI from a computational perspective, to help readers understand the latest technologies for achieving trustworthy AI. Trustworthy AI is a large and complex area, involving various dimensions. In this work, we focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being. For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems. We also discuss the accordant and conflicting interactions among different dimensions and discuss potential aspects for trustworthy AI to investigate in the future.

Enhancing the generalization capability of deep neural networks to unseen domains is crucial for safety-critical applications in the real world such as autonomous driving. To address this issue, this paper proposes a novel instance selective whitening loss to improve the robustness of the segmentation networks for unseen domains. Our approach disentangles the domain-specific style and domain-invariant content encoded in higher-order statistics (i.e., feature covariance) of the feature representations and selectively removes only the style information causing domain shift. As shown in Fig. 1, our method provides reasonable predictions for (a) low-illuminated, (b) rainy, and (c) unseen structures. These types of images are not included in the training dataset, where the baseline shows a significant performance drop, contrary to ours. Being simple yet effective, our approach improves the robustness of various backbone networks without additional computational cost. We conduct extensive experiments in urban-scene segmentation and show the superiority of our approach to existing work. Our code is available at //github.com/shachoi/RobustNet.

Deep neural networks are vulnerable to adversarial examples that mislead the models with imperceptible perturbations. Though adversarial attacks have achieved incredible success rates in the white-box setting, most existing adversaries often exhibit weak transferability in the black-box setting, especially under the scenario of attacking models with defense mechanisms. In this work, we propose a new method called variance tuning to enhance the class of iterative gradient based attack methods and improve their attack transferability. Specifically, at each iteration for the gradient calculation, instead of directly using the current gradient for the momentum accumulation, we further consider the gradient variance of the previous iteration to tune the current gradient so as to stabilize the update direction and escape from poor local optima. Empirical results on the standard ImageNet dataset demonstrate that our method could significantly improve the transferability of gradient-based adversarial attacks. Besides, our method could be used to attack ensemble models or be integrated with various input transformations. Incorporating variance tuning with input transformations on iterative gradient-based attacks in the multi-model setting, the integrated method could achieve an average success rate of 90.1% against nine advanced defense methods, improving the current best attack performance significantly by 85.1% . Code is available at //github.com/JHL-HUST/VT.

Recommender systems play a fundamental role in web applications in filtering massive information and matching user interests. While many efforts have been devoted to developing more effective models in various scenarios, the exploration on the explainability of recommender systems is running behind. Explanations could help improve user experience and discover system defects. In this paper, after formally introducing the elements that are related to model explainability, we propose a novel explainable recommendation model through improving the transparency of the representation learning process. Specifically, to overcome the representation entangling problem in traditional models, we revise traditional graph convolution to discriminate information from different layers. Also, each representation vector is factorized into several segments, where each segment relates to one semantic aspect in data. Different from previous work, in our model, factor discovery and representation learning are simultaneously conducted, and we are able to handle extra attribute information and knowledge. In this way, the proposed model can learn interpretable and meaningful representations for users and items. Unlike traditional methods that need to make a trade-off between explainability and effectiveness, the performance of our proposed explainable model is not negatively affected after considering explainability. Finally, comprehensive experiments are conducted to validate the performance of our model as well as explanation faithfulness.

In federated learning, multiple client devices jointly learn a machine learning model: each client device maintains a local model for its local training dataset, while a master device maintains a global model via aggregating the local models from the client devices. The machine learning community recently proposed several federated learning methods that were claimed to be robust against Byzantine failures (e.g., system failures, adversarial manipulations) of certain client devices. In this work, we perform the first systematic study on local model poisoning attacks to federated learning. We assume an attacker has compromised some client devices, and the attacker manipulates the local model parameters on the compromised client devices during the learning process such that the global model has a large testing error rate. We formulate our attacks as optimization problems and apply our attacks to four recent Byzantine-robust federated learning methods. Our empirical results on four real-world datasets show that our attacks can substantially increase the error rates of the models learnt by the federated learning methods that were claimed to be robust against Byzantine failures of some client devices. We generalize two defenses for data poisoning attacks to defend against our local model poisoning attacks. Our evaluation results show that one defense can effectively defend against our attacks in some cases, but the defenses are not effective enough in other cases, highlighting the need for new defenses against our local model poisoning attacks to federated learning.

北京阿比特科技有限公司