Here, we note how academics, journals and publishers should no longer refer to the social media platform Twitter as such, rather as X. Relying on Google Scholar, we found 16 examples of papers published in the last months of 2023 - essentially during the transition period between Twitter and X - that used Twitter and X, but in different ways. Unlike that transition period in which the binary Twitter/X could have been used in academic papers, we suggest that papers should no longer refer to Twitter as Twitter, but only as X, except for historical studies about that social media platform, because such use would be factually incorrect.
Purpose: Analyze the diversity of citation distributions to publications in different research topics to investigate the accuracy of size-independent, rank-based indicators. Top percentile-based indicators are the most common indicators of this type, and the evaluations of Japan are the most evident misjudgments. Design/methodology/approach: The distributions of citations to publications from countries and in journals in several research topics were analyzed along with the corresponding global publications using histograms with logarithmic binning, double rank plots, and normal probability plots of log-transformed numbers of citations. Findings: Size-independent, top percentile-based indicators are accurate when the global ranks of local publications fit a power law, but deviations in the least cited papers are frequent in countries and occur in all journals with high impact factors. In these cases, a single indicator is misleading. Comparisons of proportions of uncited papers are the best way to predict these deviations. Research limitations: The study is fundamentally analytical; its results describe mathematical facts that are self-evident. Practical implications: Respectable institutions, such as the OECD, European Commission, US National Science Board, and others, produce research country rankings and individual evaluations using size-independent percentile indicators that are misleading in many countries. These misleading evaluations should be discontinued because they cause confusion among research policymakers and lead to incorrect research policies. Originality/value: Studies linking the lower tail of citation distribution, including uncited papers, to percentile research indicators have not been performed previously. The present results demonstrate that studies of this type are necessary to find reliable procedures for research assessments.
Natural language interfaces have exhibited considerable potential in the automation of Verilog generation derived from high-level specifications through the utilization of large language models, garnering significant attention. Nevertheless, this paper elucidates that visual representations contribute essential contextual information critical to design intent for hardware architectures possessing spatial complexity, potentially surpassing the efficacy of natural-language-only inputs. Expanding upon this premise, our paper introduces an open-source benchmark for multi-modal generative models tailored for Verilog synthesis from visual-linguistic inputs, addressing both singular and complex modules. Additionally, we introduce an open-source visual and natural language Verilog query language framework to facilitate efficient and user-friendly multi-modal queries. To evaluate the performance of the proposed multi-modal hardware generative AI in Verilog generation tasks, we compare it with a popular method that relies solely on natural language. Our results demonstrate a significant accuracy improvement in the multi-modal generated Verilog compared to queries based solely on natural language. We hope to reveal a new approach to hardware design in the large-hardware-design-model era, thereby fostering a more diversified and productive approach to hardware design.
While extensive research has focused on ChatGPT in recent years, very few studies have systematically quantified and compared linguistic features between human-written and Artificial Intelligence (AI)-generated language. This study aims to investigate how various linguistic components are represented in both types of texts, assessing the ability of AI to emulate human writing. Using human-authored essays as a benchmark, we prompted ChatGPT to generate essays of equivalent length. These texts were analyzed using Open Brain AI, an online computational tool, to extract measures of phonological, morphological, syntactic, and lexical constituents. Despite AI-generated texts appearing to mimic human speech, the results revealed significant differences across multiple linguistic features such as consonants, word stress, nouns, verbs, pronouns, direct objects, prepositional modifiers, and use of difficult words among others. These findings underscore the importance of integrating automated tools for efficient language assessment, reducing time and effort in data analysis. Moreover, they emphasize the necessity for enhanced training methodologies to improve the capacity of AI for producing more human-like text.
Rule-based language processing systems have been overshadowed by neural systems in terms of utility, but it remains unclear whether neural NLP systems, in practice, learn the grammar rules that humans use. This work aims to shed light on the issue by evaluating state-of-the-art LLMs in a task of morphological analysis of complex Finnish noun forms. We generate the forms using an FST tool, and they are unlikely to have occurred in the training sets of the LLMs, therefore requiring morphological generalisation capacity. We find that GPT-4-turbo has some difficulties in the task while GPT-3.5-turbo struggles and smaller models Llama2-70B and Poro-34B fail nearly completely.
Models based on convolutional neural networks (CNN) and transformers have steadily been improved. They also have been applied in various computer vision downstream tasks. However, in object detection tasks, accurately localizing and classifying almost infinite categories of foods in images remains challenging. To address these problems, we first segmented the food as the region-of-interest (ROI) by using the segment-anything model (SAM) and masked the rest of the region except ROI as black pixels. This process simplified the problems into a single classification for which annotation and training were much simpler than object detection. The images in which only the ROI was preserved were fed as inputs to fine-tune various off-the-shelf models that encoded their own inductive biases. Among them, Data-efficient image Transformers (DeiTs) had the best classification performance. Nonetheless, when foods' shapes and textures were similar, the contextual features of the ROI-only images were not enough for accurate classification. Therefore, we introduced a novel type of combined architecture, RveRNet, which consisted of ROI, extra-ROI, and integration modules that allowed it to account for both the ROI's and global contexts. The RveRNet's F1 score was 10% better than other individual models when classifying ambiguous food images. If the RveRNet's modules were DeiT with the knowledge distillation from the CNN, performed the best. We investigated how architectures can be made robust against input noise caused by permutation and translocation. The results indicated that there was a trade-off between how much the CNN teacher's knowledge could be distilled to DeiT and DeiT's innate strength. Code is publicly available at: //github.com/Seonwhee-Genome/RveRNet.
A transformation called normalized gain (ngain) has been acknowledged as one of the most common measures of knowledge growth in pretest-posttest contexts in physics education research. Recent studies in math education have shown that ngains can also be applied to assess learners' ability to acquire unfamiliar knowledge, that is, to estimate their "learning rate". This quantity is estimated from learning data through two well-known methods: computing the average ngain of the group or computing the ngain of the average learner. These two methods commonly yield different results, and prior research has concluded that the difference between them is associated with a pretest-ngains correlation. Such a correlation would suggest a bias of this learning measurement because it implies its favoring of certain subgroups of students according to their performance in pretest measurements. The present study analyzes these two estimation methods by drawing on statistical models. Our results show that the two estimation methods are equivalent when no measurement errors exist. In contrast, when there are measurement errors, the first method provides a biased estimator, whereas the second one provides an unbiased estimator. Furthermore, these measurement errors induce a spurious correlation between the pretest and ngain scores. Our results seem consistent with prior research, except they show that measurement errors in pretest and posttest scores are the source of a spurious pretest-ngain correlation. Consequently, estimating learning rates might effectively provide unbiased estimates of knowledge change that control for the effect of prior knowledge even in the presence of pretest-ngain correlations.
In this paper, we introduce the finite difference weighted essentially non-oscillatory (WENO) scheme based on the neural network for hyperbolic conservation laws. We employ the supervised learning and design two loss functions, one with the mean squared error and the other with the mean squared logarithmic error, where the WENO3-JS weights are computed as the labels. Each loss function consists of two components where the first component compares the difference between the weights from the neural network and WENO3-JS weights, while the second component matches the output weights of the neural network and the linear weights. The former of the loss function enforces the neural network to follow the WENO properties, implying that there is no need for the post-processing layer. Additionally the latter leads to better performance around discontinuities. As a neural network structure, we choose the shallow neural network (SNN) for computational efficiency with the Delta layer consisting of the normalized undivided differences. These constructed WENO3-SNN schemes show the outperformed results in one-dimensional examples and improved behavior in two-dimensional examples, compared with the simulations from WENO3-JS and WENO3-Z.
In this article, we consider the sparse tensor singular value decomposition, which aims for dimension reduction on high-dimensional high-order data with certain sparsity structure. A method named Sparse Tensor Alternating Thresholding for Singular Value Decomposition (STAT-SVD) is proposed. The proposed procedure features a novel double projection \& thresholding scheme, which provides a sharp criterion for thresholding in each iteration. Compared with regular tensor SVD model, STAT-SVD permits more robust estimation under weaker assumptions. Both the upper and lower bounds for estimation accuracy are developed. The proposed procedure is shown to be minimax rate-optimal in a general class of situations. Simulation studies show that STAT-SVD performs well under a variety of configurations. We also illustrate the merits of the proposed procedure on a longitudinal tensor dataset on European country mortality rates.
Incorporating prior knowledge into pre-trained language models has proven to be effective for knowledge-driven NLP tasks, such as entity typing and relation extraction. Current pre-training procedures usually inject external knowledge into models by using knowledge masking, knowledge fusion and knowledge replacement. However, factual information contained in the input sentences have not been fully mined, and the external knowledge for injecting have not been strictly checked. As a result, the context information cannot be fully exploited and extra noise will be introduced or the amount of knowledge injected is limited. To address these issues, we propose MLRIP, which modifies the knowledge masking strategies proposed by ERNIE-Baidu, and introduce a two-stage entity replacement strategy. Extensive experiments with comprehensive analyses illustrate the superiority of MLRIP over BERT-based models in military knowledge-driven NLP tasks.
This paper does not describe a working system. Instead, it presents a single idea about representation which allows advances made by several different groups to be combined into an imaginary system called GLOM. The advances include transformers, neural fields, contrastive representation learning, distillation and capsules. GLOM answers the question: How can a neural network with a fixed architecture parse an image into a part-whole hierarchy which has a different structure for each image? The idea is simply to use islands of identical vectors to represent the nodes in the parse tree. If GLOM can be made to work, it should significantly improve the interpretability of the representations produced by transformer-like systems when applied to vision or language