Augmenting language models with image inputs may enable more effective jailbreak attacks through continuous optimization, unlike text inputs that require discrete optimization. However, new multimodal fusion models tokenize all input modalities using non-differentiable functions, which hinders straightforward attacks. In this work, we introduce the notion of a tokenizer shortcut that approximates tokenization with a continuous function and enables continuous optimization. We use tokenizer shortcuts to create the first end-to-end gradient image attacks against multimodal fusion models. We evaluate our attacks on Chameleon models and obtain jailbreak images that elicit harmful information for 72.5% of prompts. Jailbreak images outperform text jailbreaks optimized with the same objective and require 3x lower compute budget to optimize 50x more input tokens. Finally, we find that representation engineering defenses, like Circuit Breakers, trained only on text attacks can effectively transfer to adversarial image inputs.
Tensor parallelism provides an effective way to increase server large language model (LLM) inference efficiency despite adding an additional communication cost. However, as server LLMs continue to scale in size, they will need to be distributed across more devices, magnifying the communication cost. One way to approach this problem is with quantization, but current methods for LLMs tend to avoid quantizing the features that tensor parallelism needs to communicate. Taking advantage of consistent outliers in communicated features, we introduce a quantization method that reduces communicated values on average from 16 bits to 4.2 bits while preserving nearly all of the original performance. For instance, our method maintains around 98.0% and 99.5% of Gemma 2 27B's and Llama 2 13B's original performance, respectively, averaged across all tasks we evaluated on.
Transformer models have demonstrated remarkable success in many domains such as natural language processing (NLP) and computer vision. With the growing interest in transformer-based architectures, they are now utilized for gesture recognition. So, we also explore and devise a novel ConvMixFormer architecture for dynamic hand gestures. The transformers use quadratic scaling of the attention features with the sequential data, due to which these models are computationally complex and heavy. We have considered this drawback of the transformer and designed a resource-efficient model that replaces the self-attention in the transformer with the simple convolutional layer-based token mixer. The computational cost and the parameters used for the convolution-based mixer are comparatively less than the quadratic self-attention. Convolution-mixer helps the model capture the local spatial features that self-attention struggles to capture due to their sequential processing nature. Further, an efficient gate mechanism is employed instead of a conventional feed-forward network in the transformer to help the model control the flow of features within different stages of the proposed model. This design uses fewer learnable parameters which is nearly half the vanilla transformer that helps in fast and efficient training. The proposed method is evaluated on NVidia Dynamic Hand Gesture and Briareo datasets and our model has achieved state-of-the-art results on single and multimodal inputs. We have also shown the parameter efficiency of the proposed ConvMixFormer model compared to other methods. The source code is available at //github.com/mallikagarg/ConvMixFormer.
Recent advancements in solving Bayesian inverse problems have spotlighted denoising diffusion models (DDMs) as effective priors. Although these have great potential, DDM priors yield complex posterior distributions that are challenging to sample. Existing approaches to posterior sampling in this context address this problem either by retraining model-specific components, leading to stiff and cumbersome methods, or by introducing approximations with uncontrolled errors that affect the accuracy of the produced samples. We present an innovative framework, divide-and-conquer posterior sampling, which leverages the inherent structure of DDMs to construct a sequence of intermediate posteriors that guide the produced samples to the target posterior. Our method significantly reduces the approximation error associated with current techniques without the need for retraining. We demonstrate the versatility and effectiveness of our approach for a wide range of Bayesian inverse problems. The code is available at \url{//github.com/Badr-MOUFAD/dcps}
This paper proposes a novel problem: vision-based perception to learn and predict the collective dynamics of multi-agent systems, specifically focusing on interaction strength and convergence time. Multi-agent systems are defined as collections of more than ten interacting agents that exhibit complex group behaviors. Unlike prior studies that assume knowledge of agent positions, we focus on deep learning models to directly predict collective dynamics from visual data, captured as frames or events. Due to the lack of relevant datasets, we create a simulated dataset using a state-of-the-art flocking simulator, coupled with a vision-to-event conversion framework. We empirically demonstrate the effectiveness of event-based representation over traditional frame-based methods in predicting these collective behaviors. Based on our analysis, we present event-based vision for Multi-Agent dynamic Prediction (evMAP), a deep learning architecture designed for real-time, accurate understanding of interaction strength and collective behavior emergence in multi-agent systems.
Selective state space models (SSMs) represented by Mamba have demonstrated their computational efficiency and promising outcomes in various tasks, including automatic speech recognition (ASR). Mamba has been applied to ASR task with the attention-based encoder-decoder framework, where the cross-attention mechanism between encoder and decoder remains. This paper explores the capability of Mamba as the decoder-only architecture in ASR task. Our MAmba-based DEcoder-ONly approach (MADEON) consists of a single decoder that takes speech tokens as a condition and predicts text tokens in an autoregressive manner. To enhance MADEON, we further propose speech prefixing that performs bidirectional processing on speech tokens, which enriches the contextual information in the hidden states. Our experiments show that MADEON significantly outperforms a non-selective SSM. The combination of speech prefixing and the recently proposed Mamba-2 yields comparable performance to Transformer-based models on large datasets.
Recently, token-based generation have demonstrated their effectiveness in image synthesis. As a representative example, non-autoregressive Transformers (NATs) can generate decent-quality images in a few steps. NATs perform generation in a progressive manner, where the latent tokens of a resulting image are incrementally revealed. At each step, the unrevealed image regions are padded with mask tokens and inferred by NAT. In this paper, we delve into the mechanisms behind the effectiveness of NATs and uncover two important patterns that naturally emerge from NATs: Spatially (within a step), although mask and visible tokens are processed uniformly by NATs, the interactions between them are highly asymmetric. In specific, mask tokens mainly gather information for decoding, while visible tokens tend to primarily provide information, and their deep representations can be built only upon themselves. Temporally (across steps), the interactions between adjacent generation steps mostly concentrate on updating the representations of a few critical tokens, while the computation for the majority of tokens is generally repetitive. Driven by these findings, we propose EfficientNAT (ENAT), a NAT model that explicitly encourages these critical interactions inherent in NATs. At the spatial level, we disentangle the computations of visible and mask tokens by encoding visible tokens independently, while decoding mask tokens conditioned on the fully encoded visible tokens. At the temporal level, we prioritize the computation of the critical tokens at each step, while maximally reusing previously computed token representations to supplement necessary information. ENAT improves the performance of NATs notably with significantly reduced computational cost. Experiments on ImageNet-256, ImageNet-512 and MS-COCO validate the effectiveness of ENAT. Code is available at //github.com/LeapLabTHU/ENAT.
Previous research in the scientific field has utilized statistical empirical models and machine learning to address fitting challenges. While empirical models have the advantage of numerical generalization, they often sacrifice accuracy. However, conventional machine learning methods can achieve high precision but may lack the desired generalization. The article introduces a Regression-based Physics-Informed Neural Networks (Reg-PINNs), which embeds physics-inspired empirical models into the neural network's loss function, thereby combining the benefits of generalization and high accuracy. The study validates the proposed method using the magnetopause boundary location as the target and explores the feasibility of methods including Shue et al. [1998], a data overfitting model, a fully-connected networks, Reg-PINNs with Shue's model, and Reg-PINNs with the overfitting model. Compared to Shue's model, this technique achieves approximately a 30% reduction in RMSE, presenting a proof-of-concept improved solution for the scientific community.
This paper explores the application of Positive-Unlabeled (PU) learning for enhanced Distributed Denial-of-Service (DDoS) detection in cloud environments. Utilizing the $\texttt{BCCC-cPacket-Cloud-DDoS-2024}$ dataset, we implement PU learning with four machine learning algorithms: XGBoost, Random Forest, Support Vector Machine, and Na\"{i}ve Bayes. Our results demonstrate the superior performance of ensemble methods, with XGBoost and Random Forest achieving $F_{1}$ scores exceeding 98%. We quantify the efficacy of each approach using metrics including $F_{1}$ score, ROC AUC, Recall, and Precision. This study bridges the gap between PU learning and cloud-based anomaly detection, providing a foundation for addressing Context-Aware DDoS Detection in multi-cloud environments. Our findings highlight the potential of PU learning in scenarios with limited labeled data, offering valuable insights for developing more robust and adaptive cloud security mechanisms.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.