We study the density estimation problem defined as follows: given $k$ distributions $p_1, \ldots, p_k$ over a discrete domain $[n]$, as well as a collection of samples chosen from a ``query'' distribution $q$ over $[n]$, output $p_i$ that is ``close'' to $q$. Recently~\cite{aamand2023data} gave the first and only known result that achieves sublinear bounds in {\em both} the sampling complexity and the query time while preserving polynomial data structure space. However, their improvement over linear samples and time is only by subpolynomial factors. Our main result is a lower bound showing that, for a broad class of data structures, their bounds cannot be significantly improved. In particular, if an algorithm uses $O(n/\log^c k)$ samples for some constant $c>0$ and polynomial space, then the query time of the data structure must be at least $k^{1-O(1)/\log \log k}$, i.e., close to linear in the number of distributions $k$. This is a novel \emph{statistical-computational} trade-off for density estimation, demonstrating that any data structure must use close to a linear number of samples or take close to linear query time. The lower bound holds even in the realizable case where $q=p_i$ for some $i$, and when the distributions are flat (specifically, all distributions are uniform over half of the domain $[n]$). We also give a simple data structure for our lower bound instance with asymptotically matching upper bounds. Experiments show that the data structure is quite efficient in practice.
Here we contribute a fast symbolic eigenvalue solver for matrices whose eigenvalues are $\mathbb{Z}$-linear combinations of their entries, alongside efficient general and stochastic $M^{X}$ generators. Users can interact with a few degrees of freedom to create linear operators, making high-dimensional symbolic analysis feasible for when numerical analyses are insufficient.
In differential privacy, $\textit{continual observation}$ refers to problems in which we wish to continuously release a function of a dataset that is revealed one element at a time. The challenge is to maintain a good approximation while keeping the combined output over all time steps differentially private. In the special case of $\textit{continual counting}$ we seek to approximate a sum of binary input elements. This problem has received considerable attention lately, in part due to its relevance in implementations of differentially private stochastic gradient descent. $\textit{Factorization mechanisms}$ are the leading approach to continual counting, but the best such mechanisms do not work well in $\textit{streaming}$ settings since they require space proportional to the size of the input. In this paper, we present a simple approach to approximating factorization mechanisms in low space via $\textit{binning}$, where adjacent matrix entries with similar values are changed to be identical in such a way that a matrix-vector product can be maintained in sublinear space. Our approach has provable sublinear space guarantees for a class of lower triangular matrices whose entries are monotonically decreasing away from the diagonal. We show empirically that even with very low space usage we are able to closely match, and sometimes surpass, the performance of asymptotically optimal factorization mechanisms. Recently, and independently of our work, Dvijotham et al. have also suggested an approach to implementing factorization mechanisms in a streaming setting. Their work differs from ours in several respects: It only addresses factorization into $\textit{Toeplitz}$ matrices, only considers $\textit{maximum}$ error, and uses a different technique based on rational function approximation that seems less versatile than our binning approach.
Direct sum theorems state that the cost of solving $k$ instances of a problem is at least $\Omega(k)$ times the cost of solving a single instance. We prove the first such results in the randomised parity decision tree model. We show that a direct sum theorem holds whenever (1) the lower bound for parity decision trees is proved using the discrepancy method; or (2) the lower bound is proved relative to a product distribution.
Recently, Miller and Wu introduced the positive $\lambda$-calculus, a call-by-value $\lambda$-calculus with sharing obtained by assigning proof terms to the positively polarized focused proofs for minimal intuitionistic logic. The positive $\lambda$-calculus stands out among $\lambda$-calculi with sharing for a compactness property related to the sharing of variables. We show that -- thanks to compactness -- the positive calculus neatly captures the core of useful sharing, a technique for the study of reasonable time cost models.
Nominal algebra includes $\alpha$-equality and freshness constraints on nominal terms endowed with a nominal set semantics that facilitates reasoning about languages with binders. Nominal unification is decidable and unitary, however, its extension with equational axioms such as Commutativity (which has a finitary first-order unification type) is no longer finitary unless permutation fixed-point constraints are used. In this paper, we extend the notion of nominal algebra by introducing fixed-point constraints and provide a sound semantics using strong nominal sets. We show, by providing a counter-example, that the class of nominal sets is not a sound denotation for this extended nominal algebra. To recover soundness we propose two different formulations of nominal algebra, one obtained by restricting to a class of fixed-point contexts that are in direct correspondence with freshness contexts and another obtained by using a different set of derivation rules.
Augmenting a smooth cost function with an $\ell_1$ penalty allows analysts to efficiently conduct estimation and variable selection simultaneously in sophisticated models and can be efficiently implemented using proximal gradient methods. However, one drawback of the $\ell_1$ penalty is bias: nonzero parameters are underestimated in magnitude, motivating techniques such as the Adaptive Lasso which endow each parameter with its own penalty coefficient. But it's not clear how these parameter-specific penalties should be set in complex models. In this article, we study the approach of treating the penalty coefficients as additional decision variables to be learned in a \textit{Maximum a Posteriori} manner, developing a proximal gradient approach to joint optimization of these together with the parameters of any differentiable cost function. Beyond reducing bias in estimates, this procedure can also encourage arbitrary sparsity structure via a prior on the penalty coefficients. We compare our method to implementations of specific sparsity structures for non-Gaussian regression on synthetic and real datasets, finding our more general method to be competitive in terms of both speed and accuracy. We then consider nonlinear models for two case studies: COVID-19 vaccination behavior and international refugee movement, highlighting the applicability of this approach to complex problems and intricate sparsity structures.
Functional data analysis, which models data as realizations of random functions over a continuum, has emerged as a useful tool for time series data. Often, the goal is to infer the dynamic connections (or time-varying conditional dependencies) among multiple functions or time series. For this task, a dynamic and Bayesian functional graphical model is introduced. The proposed modeling approach prioritizes the careful definition of an appropriate graph to identify both time-invariant and time-varying connectivity patterns. A novel block-structured sparsity prior is paired with a finite basis expansion, which together yield effective shrinkage and graph selection with efficient computations via a Gibbs sampling algorithm. Crucially, the model includes (one or more) graph changepoints, which are learned jointly with all model parameters and incorporate graph dynamics. Simulation studies demonstrate excellent graph selection capabilities, with significant improvements over competing methods. The proposed approach is applied to study of dynamic connectivity patterns of sea surface temperatures in the Pacific Ocean and reveals meaningful edges.
We propose a novel method that solves global optimization problems in two steps: (1) perform a (exponential) power-$N$ transformation to the not-necessarily differentiable objective function $f$ to obtain $f_N$, and (2) optimize the Gaussian-smoothed $f_N$ with stochastic approximations. Under mild conditions on $f$, for any $\delta>0$, we prove that with a sufficiently large power $N_\delta$, this method converges to a solution in the $\delta$-neighborhood of $f$'s global maximum point. The convergence rate is $O(d^2\sigma^4\varepsilon^{-2})$, which is faster than both the standard and single-loop homotopy methods. Extensive experiments show that our method requires significantly fewer iterations than other compared algorithms to produce a high-quality solution.
We derive universal approximation results for the class of (countably) $m$-rectifiable measures. Specifically, we prove that $m$-rectifiable measures can be approximated as push-forwards of the one-dimensional Lebesgue measure on $[0,1]$ using ReLU neural networks with arbitrarily small approximation error in terms of Wasserstein distance. What is more, the weights in the networks under consideration are quantized and bounded and the number of ReLU neural networks required to achieve an approximation error of $\varepsilon$ is no larger than $2^{b(\varepsilon)}$ with $b(\varepsilon)=\mathcal{O}(\varepsilon^{-m}\log^2(\varepsilon))$. This result improves Lemma IX.4 in Perekrestenko et al. as it shows that the rate at which $b(\varepsilon)$ tends to infinity as $\varepsilon$ tends to zero equals the rectifiability parameter $m$, which can be much smaller than the ambient dimension. We extend this result to countably $m$-rectifiable measures and show that this rate still equals the rectifiability parameter $m$ provided that, among other technical assumptions, the measure decays exponentially on the individual components of the countably $m$-rectifiable support set.
In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.