The internet-of-things (IoT) refers to the growing field of interconnected pervasive computing devices and the networking that supports smart, embedded applications. The IoT has multiple human-computer interaction challenges due to its many formats and interlinked components, and central to these is the need to provide sensory information and situational context pertaining to users in a more human-friendly, easily understandable format. This work addresses this by applying mixed reality toward expressing the underlying behaviors and states internal to IoT devices and IoT-enabled objects. It extends the authors' previous research on IoT Avatars (mixed reality character representations of physical IoT devices), presenting a new head-mounted display framework and interconnection architecture. This contributes i) an exploration of mixed reality for smart spaces, ii) an approach toward expressive avatar behaviors using fuzzy inference, and iii) an early functional prototype of a hybrid physical and mixed reality IoT-enabled object. This approach is a step toward new information presentation, interaction, and engagement capabilities for smart devices and environments.
We present a major new version of Scenic, a probabilistic programming language for writing formal models of the environments of cyber-physical systems. Scenic has been successfully used for the design and analysis of CPS in a variety of domains, but earlier versions are limited to environments which are essentially two-dimensional. In this paper, we extend Scenic with native support for 3D geometry, introducing new syntax which provides expressive ways to describe 3D configurations while preserving the simplicity and readability of the language. We replace Scenic's simplistic representation of objects as boxes with precise modeling of complex shapes, including a ray tracing-based visibility system that accounts for object occlusion. We also extend the language to support arbitrary temporal requirements expressed in LTL, and build an extensible Scenic parser generated from a formal grammar of the language. Finally, we illustrate the new application domains these features enable with case studies that would have been impossible to accurately model in Scenic 2.
Wi-Fi Direct is a promising technology for the support of device-to-device communications (D2D) on commercial mobile devices. However, the standard as-it-is is not sufficient to support the real deployment of networking solutions entirely based on D2D such as opportunistic networks. In fact, WiFi Direct presents some characteristics that could limit the autonomous creation of D2D connections among users' personal devices. Specifically, the standard explicitly requires the user's authorization to establish a connection between two or more devices, and it provides a limited support for inter-group communication. In some cases, this might lead to the creation of isolated groups of nodes which cannot communicate among each other. In this paper, we propose a novel middleware-layer protocol for the efficient configuration and management of WiFi Direct groups (WiFi Direct Group Manager, WFD-GM) to enable autonomous connections and inter-group communication. This enables opportunistic networks in real conditions (e.g., variable mobility and network size). WFD-GM defines a context function that takes into account heterogeneous parameters for the creation of the best group configuration in a specific time window, including an index of nodes' stability and power levels. We evaluate the protocol performances by simulating three reference scenarios including different mobility models, geographical areas and number of nodes. Simulations are also supported by experimental results related to the evaluation in a real testbed of the involved context parameters. We compare WFD-GM with the state-of-the-art solutions and we show that it performs significantly better than a Baseline approach in scenarios with medium/low mobility, and it is comparable with it in case of high mobility, without introducing additional overhead.
Avatar technology can offer accessibility possibilities and improve the Deaf-and-Hard of Hearing sign language users access to communication, education and services, such as the healthcare system. However, sign language users acceptance of signing avatars as well as their attitudes towards them vary and depend on many factors. Furthermore, research on avatar technology is mostly done by researchers who are not Deaf. The study examines the extent to which intrinsic or extrinsic factors contribute to predict the attitude towards avatars across cultures. Intrinsic factors include the characteristics of the avatar, such as appearance, movements and facial expressions. Extrinsic factors include users technology experience, their hearing status, age and their sign language fluency. This work attempts to answer questions such as, if lower attitude ratings are related to poor technology experience with ASL users, for example, is that also true for Moroccan Sign Language (MSL) users? For the purposes of the study, we designed a questionnaire to understand MSL users attitude towards avatars. Three groups of participants were surveyed: Deaf (57), Hearing (20) and Hard-of-Hearing (3). The results of our study were then compared with those reported in other relevant studies.
For autonomous driving, traversability analysis is one of the most basic and essential tasks. In this paper, we propose a novel LiDAR-based terrain modeling approach, which could output stable, complete and accurate terrain models and traversability analysis results. As terrain is an inherent property of the environment that does not change with different view angles, our approach adopts a multi-frame information fusion strategy for terrain modeling. Specifically, a normal distributions transform mapping approach is adopted to accurately model the terrain by fusing information from consecutive LiDAR frames. Then the spatial-temporal Bayesian generalized kernel inference and bilateral filtering are utilized to promote the stability and completeness of the results while simultaneously retaining the sharp terrain edges. Based on the terrain modeling results, the traversability of each region is obtained by performing geometric connectivity analysis between neighboring terrain regions. Experimental results show that the proposed method could run in real-time and outperforms state-of-the-art approaches.
Upon the advent of the emerging metaverse and its related applications in Augmented Reality (AR), the current bit-oriented network struggles to support real-time changes for the vast amount of associated information, hindering its development. Thus, a critical revolution in the Sixth Generation (6G) networks is envisioned through the joint exploitation of information context and its importance to the task, leading to a communication paradigm shift towards semantic and effectiveness levels. However, current research has not yet proposed any explicit and systematic communication framework for AR applications that incorporate these two levels. To fill this research gap, this paper presents a task-oriented and semantics-aware communication framework for augmented reality (TSAR) to enhance communication efficiency and effectiveness in 6G. Specifically, we first analyse the traditional wireless AR point cloud communication framework and then summarize our proposed semantic information along with the end-to-end wireless communication. We then detail the design blocks of the TSAR framework, covering both semantic and effectiveness levels. Finally, numerous experiments have been conducted to demonstrate that, compared to the traditional point cloud communication framework, our proposed TSAR significantly reduces wireless AR application transmission latency by 95.6%, while improving communication effectiveness in geometry and color aspects by up to 82.4% and 20.4%, respectively.
Modeling 3D avatars benefits various application scenarios such as AR/VR, gaming, and filming. Character faces contribute significant diversity and vividity as a vital component of avatars. However, building 3D character face models usually requires a heavy workload with commercial tools, even for experienced artists. Various existing sketch-based tools fail to support amateurs in modeling diverse facial shapes and rich geometric details. In this paper, we present SketchMetaFace - a sketching system targeting amateur users to model high-fidelity 3D faces in minutes. We carefully design both the user interface and the underlying algorithm. First, curvature-aware strokes are adopted to better support the controllability of carving facial details. Second, considering the key problem of mapping a 2D sketch map to a 3D model, we develop a novel learning-based method termed "Implicit and Depth Guided Mesh Modeling" (IDGMM). It fuses the advantages of mesh, implicit, and depth representations to achieve high-quality results with high efficiency. In addition, to further support usability, we present a coarse-to-fine 2D sketching interface design and a data-driven stroke suggestion tool. User studies demonstrate the superiority of our system over existing modeling tools in terms of the ease to use and visual quality of results. Experimental analyses also show that IDGMM reaches a better trade-off between accuracy and efficiency. SketchMetaFace is available at //zhongjinluo.github.io/SketchMetaFace/.
The advent of the Metaverse concept has further expedited the evolution of haptic, tactile internet, and multimedia applications with their VR/AR/XR services, and therefore, fully-immersive sensing is most likely to define the next generation of wireless networks as a key to realize the speculative vision of the Metaverse. In this magazine, we articulate different types of media that we envision will be communicated between the cyber and physical twins in the Metaverse. In particular, we explore the advantages grasped by exploiting each kind, and we point out critical challenges pertinent to 3D data processing, coding, transporting, and rendering. We further shed light on the role of future wireless networks in delivering the anticipated quality of immersion through the reliable streaming of multimedia signals between the digital twin and its physical counterpart. Specifically, we explore emergent communication paradigms, including semantic, holographic, and goal-oriented communication, which we expect to realize energy and spectrally efficient Metaverse while ensuring ultra-low latency.
The dynamic nature of driving environments and the presence of diverse road users pose significant challenges for decision-making in autonomous driving. Deep reinforcement learning (DRL) has emerged as a popular approach to tackle this problem. However, the application of existing DRL solutions is mainly confined to simulated environments due to safety concerns, impeding their deployment in real-world. To overcome this limitation, this paper introduces a novel neuro-symbolic model-free DRL approach, called DRL with Symbolic Logics (DRLSL) that combines the strengths of DRL (learning from experience) and symbolic first-order logics knowledge-driven reasoning) to enable safe learning in real-time interactions of autonomous driving within real environments. This innovative approach provides a means to learn autonomous driving policies by actively engaging with the physical environment while ensuring safety. We have implemented the DRLSL framework in autonomous driving using the highD dataset and demonstrated that our method successfully avoids unsafe actions during both the training and testing phases. Furthermore, our results indicate that DRLSL achieves faster convergence during training and exhibits better generalizability to new driving scenarios compared to traditional DRL methods.
The Internet of Things (IoT) boom has revolutionized almost every corner of people's daily lives: healthcare, home, transportation, manufacturing, supply chain, and so on. With the recent development of sensor and communication technologies, IoT devices including smart wearables, cameras, smartwatches, and autonomous vehicles can accurately measure and perceive their surrounding environment. Continuous sensing generates massive amounts of data and presents challenges for machine learning. Deep learning models (e.g., convolution neural networks and recurrent neural networks) have been extensively employed in solving IoT tasks by learning patterns from multi-modal sensory data. Graph Neural Networks (GNNs), an emerging and fast-growing family of neural network models, can capture complex interactions within sensor topology and have been demonstrated to achieve state-of-the-art results in numerous IoT learning tasks. In this survey, we present a comprehensive review of recent advances in the application of GNNs to the IoT field, including a deep dive analysis of GNN design in various IoT sensing environments, an overarching list of public data and source code from the collected publications, and future research directions. To keep track of newly published works, we collect representative papers and their open-source implementations and create a Github repository at //github.com/GuiminDong/GNN4IoT.
Along with the massive growth of the Internet from the 1990s until now, various innovative technologies have been created to bring users breathtaking experiences with more virtual interactions in cyberspace. Many virtual environments with thousands of services and applications, from social networks to virtual gaming worlds, have been developed with immersive experience and digital transformation, but most are incoherent instead of being integrated into a platform. In this context, metaverse, a term formed by combining meta and universe, has been introduced as a shared virtual world that is fueled by many emerging technologies, such as fifth-generation networks and beyond, virtual reality, and artificial intelligence (AI). Among such technologies, AI has shown the great importance of processing big data to enhance immersive experience and enable human-like intelligence of virtual agents. In this survey, we make a beneficial effort to explore the role of AI in the foundation and development of the metaverse. We first deliver a preliminary of AI, including machine learning algorithms and deep learning architectures, and its role in the metaverse. We then convey a comprehensive investigation of AI-based methods concerning six technical aspects that have potentials for the metaverse: natural language processing, machine vision, blockchain, networking, digital twin, and neural interface, and being potential for the metaverse. Subsequently, several AI-aided applications, such as healthcare, manufacturing, smart cities, and gaming, are studied to be deployed in the virtual worlds. Finally, we conclude the key contribution of this survey and open some future research directions in AI for the metaverse.