亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of sampling from the ferromagnetic Potts and random-cluster models on a general family of random graphs via the Glauber dynamics for the random-cluster model. The random-cluster model is parametrized by an edge probability $p \in (0,1)$ and a cluster weight $q > 0$. We establish that for every $q\ge 1$, the random-cluster Glauber dynamics mixes in optimal $\Theta(n\log n)$ steps on $n$-vertex random graphs having a prescribed degree sequence with bounded average branching $\gamma$ throughout the full high-temperature uniqueness regime $p<p_u(q,\gamma)$. The family of random graph models we consider include the Erd\H{o}s--R\'enyi random graph $G(n,\gamma/n)$, and so we provide the first polynomial-time sampling algorithm for the ferromagnetic Potts model on the Erd\H{o}s--R\'enyi random graphs that works for all $q$ in the full uniqueness regime. We accompany our results with mixing time lower bounds (exponential in the maximum degree) for the Potts Glauber dynamics, in the same settings where our $\Theta(n \log n)$ bounds for the random-cluster Glauber dynamics apply. This reveals a significant computational advantage of random-cluster based algorithms for sampling from the Potts Gibbs distribution at high temperatures in the presence of high-degree vertices.

相關內容

We investigate special structures due to automorphisms in isogeny graphs of principally polarized abelian varieties, and abelian surfaces in particular. We give theoretical and experimental results on the spectral and statistical properties of (2, 2)-isogeny graphs of superspecial abelian surfaces, including stationary distributions for random walks, bounds on eigenvalues and diameters, and a proof of the connectivity of the Jacobian subgraph of the (2, 2)-isogeny graph. Our results improve our understanding of the performance and security of some recently-proposed cryptosystems, and are also a concrete step towards a better understanding of general superspecial isogeny graphs in arbitrary dimension.

In this paper, we prove a local limit theorem for the chi-square distribution with $r > 0$ degrees of freedom and noncentrality parameter $\lambda \geq 0$. We use it to develop refined normal approximations for the survival function. Our maximal errors go down to an order of $r^{-2}$, which is significantly smaller than the maximal error bounds of order $r^{-1/2}$ recently found by Horgan & Murphy (2013) and Seri (2015). Our results allow us to drastically reduce the number of observations required to obtain negligible errors in the energy detection problem, from $250$, as recommended in the seminal work of Urkowitz (1967), to only $8$ here with our new approximations. We also obtain an upper bound on several probability metrics between the central and noncentral chi-square distributions and the standard normal distribution, and we obtain an approximation for the median that improves the lower bound previously obtained by Robert (1990).

A class of relational databases has low degree if for all $\delta>0$, all but finitely many databases in the class have degree at most $n^{\delta}$, where $n$ is the size of the database. Typical examples are databases of bounded degree or of degree bounded by $\log n$. It is known that over a class of databases having low degree, first-order boolean queries can be checked in pseudo-linear time, i.e. for all $\epsilon>0$ in time bounded by $n^{1+\epsilon}$. We generalize this result by considering query evaluation. We show that counting the number of answers to a query can be done in pseudo-linear time and that after a pseudo-linear time preprocessing we can test in constant time whether a given tuple is a solution to a query or enumerate the answers to a query ith constant delay.

The behavior of a generalized random environment integer-valued autoregressive model of higher order with geometric marginal distribution {and negative binomial thinning operator} (abbrev. $RrNGINAR(\mathcal{M,A,P})$) is dictated by a realization $\{z_n\}_{n=1}^\infty$ of an auxiliary Markov chain called random environment process. Element $z_n$ represents a state of the environment in moment $n\in\mathbb{N}$ and determines three different parameters of the model in that moment. In order to use $RrNGINAR(\mathcal{M,A,P})$ model, one first needs to estimate $\{z_n\}_{n=1}^\infty$, which was so far done by K-means data clustering. We argue that this approach ignores some information and performs poorly in certain situations. We propose a new method for estimating $\{z_n\}_{n=1}^\infty$, which includes the data transformation preceding the clustering, in order to reduce the information loss. To confirm its efficiency, we compare this new approach with the usual one when applied on the simulated and the real-life data, and notice all the benefits obtained from our method.

Recently, random walks on dynamic graphs have been studied because of their adaptivity to the time-varying structure of real-world networks. In general, there is a tremendous gap between static and dynamic graph settings for the lazy simple random walk: Although $O(n^3)$ cover time was shown for any static graphs of $n$ vertices, there is an edge-changing dynamic graph with an exponential hitting time. On the other hand, previous works indicate that the random walk on a dynamic graph with a time-homogeneous stationary distribution behaves almost identically to that on a static graph. In this paper, we strengthen this insight by obtaining general and improved bounds. Specifically, we consider a random walk according to a sequence $(P_t)_{t\geq 1}$ of irreducible and reversible transition matrices such that all $P_t$ have the same stationary distribution. We bound the mixing, hitting, and cover times in terms of the hitting and relaxation times of the random walk according to the worst fixed $P_t$. Moreover, we obtain the first bounds of the hitting and cover times of multiple random walks and the coalescing time on dynamic graphs. These bounds can be seen as an extension of the well-known bounds of random walks on static graphs. Our results generalize the previous upper bounds for specific random walks on dynamic graphs, e.g., lazy simple random walks and $d_{\max}$-lazy walks, and give improved and tight upper bounds in various cases. As an interesting consequence of our generalization, we obtain tight bounds for the lazy Metropolis walk [Nonaka, Ono, Sadakane, and Yamashita, TCS10] on any dynamic graph: $O(n^2)$ mixing time, $O(n^2)$ hitting time, and $O(n^2\log n)$ cover time. Additionally, our coalescing time bound implies the consensus time bound of the pull voting on a dynamic graph.

We consider the problem of Bayesian optimization of a one-dimensional Brownian motion in which the $T$ adaptively chosen observations are corrupted by Gaussian noise. We show that as the smallest possible expected cumulative regret and the smallest possible expected simple regret scale as $\Omega(\sigma\sqrt{T / \log (T)}) \cap \mathcal{O}(\sigma\sqrt{T} \cdot \log T)$ and $\Omega(\sigma / \sqrt{T \log (T)}) \cap \mathcal{O}(\sigma\log T / \sqrt{T})$ respectively, where $\sigma^2$ is the noise variance. Thus, our upper and lower bounds are tight up to a factor of $\mathcal{O}( (\log T)^{1.5} )$. The upper bound uses an algorithm based on confidence bounds and the Markov property of Brownian motion (among other useful properties), and the lower bound is based on a reduction to binary hypothesis testing.

A strict bramble of a graph $G$ is a collection of pairwise-intersecting connected subgraphs of $G.$ The order of a strict bramble ${\cal B}$ is the minimum size of a set of vertices intersecting all sets of ${\cal B}.$ The strict bramble number of $G,$ denoted by ${\sf sbn}(G),$ is the maximum order of a strict bramble in $G.$ The strict bramble number of $G$ can be seen as a way to extend the notion of acyclicity, departing from the fact that (non-empty) acyclic graphs are exactly the graphs where every strict bramble has order one. We initiate the study of this graph parameter by providing three alternative definitions, each revealing different structural characteristics. The first is a min-max theorem asserting that ${\sf sbn}(G)$ is equal to the minimum $k$ for which $G$ is a minor of the lexicographic product of a tree and a clique on $k$ vertices (also known as the lexicographic tree product number). The second characterization is in terms of a new variant of a tree decomposition called lenient tree decomposition. We prove that ${\sf sbn}(G)$ is equal to the minimum $k$ for which there exists a lenient tree decomposition of $G$ of width at most $k.$ The third characterization is in terms of extremal graphs. For this, we define, for each $k,$ the concept of a $k$-domino-tree and we prove that every edge-maximal graph of strict bramble number at most $k$ is a $k$-domino-tree. We also identify three graphs that constitute the minor-obstruction set of the class of graphs with strict bramble number at most two. We complete our results by proving that, given some $G$ and $k,$ deciding whether ${\sf sbn}(G) \leq k$ is an ${\sf NP}$-complete problem.

We present an expanded version of our previously released Kazakh text-to-speech (KazakhTTS) synthesis corpus. In the new KazakhTTS2 corpus, the overall size is increased from 93 hours to 271 hours, the number of speakers has risen from two to five (three females and two males), and the topic coverage is diversified with the help of new sources, including a book and Wikipedia articles. This corpus is necessary for building high-quality TTS systems for Kazakh, a Central Asian agglutinative language from the Turkic family, which presents several linguistic challenges. We describe the corpus construction process and provide the details of the training and evaluation procedures for the TTS system. Our experimental results indicate that the constructed corpus is sufficient to build robust TTS models for real-world applications, with a subjective mean opinion score of above 4.0 for all the five speakers. We believe that our corpus will facilitate speech and language research for Kazakh and other Turkic languages, which are widely considered to be low-resource due to the limited availability of free linguistic data. The constructed corpus, code, and pretrained models are publicly available in our GitHub repository.

We consider the problem of energy-efficient broadcasting on dense ad-hoc networks. Ad-hoc networks are generally modeled using random geometric graphs (RGGs). Here, nodes are deployed uniformly in a square area around the origin, and any two nodes which are within Euclidean distance of $1$ are assumed to be able to receive each other's broadcast. A source node at the origin encodes $k$ data packets of information into $n\ (>k)$ coded packets and transmits them to all its one-hop neighbors. The encoding is such that, any node that receives at least $k$ out of the $n$ coded packets can retrieve the original $k$ data packets. Every other node in the network follows a probabilistic forwarding protocol; upon reception of a previously unreceived packet, the node forwards it with probability $p$ and does nothing with probability $1-p$. We are interested in the minimum forwarding probability which ensures that a large fraction of nodes can decode the information from the source. We deem this a \emph{near-broadcast}. The performance metric of interest is the expected total number of transmissions at this minimum forwarding probability, where the expectation is over both the forwarding protocol as well as the realization of the RGG. In comparison to probabilistic forwarding with no coding, our treatment of the problem indicates that, with a judicious choice of $n$, it is possible to reduce the expected total number of transmissions while ensuring a near-broadcast.

We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.

北京阿比特科技有限公司