亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Esports and high performance human-computer interaction are on the forefront of applying new hardware and software technologies in practice. Despite that, there is a paucity of research on how semi-professional and professional championship level players approach aspects of their preparation. To address that, we have performed, transcribed, and analyzed interviews with top-tournament players, coaches, and managers across multiple game titles. The interviews range from competitive events occuring between 2015-2020. Initial processing included transcription and manual verification. The pre-processed interview data were then organized and structured into relevant categories, touching on psychological, physical, and nutritional aspects of esports preparation. Further, where applicable, interview responses where rated and quantified via consensus judgement by a panel of experts. The results indicate that physical training was most often mentioned as a relevant or consistent activity, while nutrition was indicated as relatively unimportant. Qualitative analysis also indicated that consistency and resiliency were noted as the most key factors recommended for upcoming esports competitors. It is also clear that many players put emphasis on balancing their gameplay time and with activities. Lastly, we identified important areas of inquiry towards a deeper understanding of the mental and physical demands of professional esports players.

相關內容

This paper introduces a category theory-based framework to redefine physical computing in light of advancements in quantum computing and non-standard computing systems. By integrating classical definitions within this broader perspective, the paper rigorously recontextualizes what constitutes physical computing devices and processes. It demonstrates how the compositional nature and relational structures of physical computing systems can be coherently formalized using category theory. This approach not only encapsulates recent formalisms in physical computing but also offers a structured method to explore the dynamic interactions within these systems.

Earth system forecasting has traditionally relied on complex physical models that are computationally expensive and require significant domain expertise. In the past decade, the unprecedented increase in spatiotemporal Earth observation data has enabled data-driven forecasting models using deep learning techniques. These models have shown promise for diverse Earth system forecasting tasks but either struggle with handling uncertainty or neglect domain-specific prior knowledge, resulting in averaging possible futures to blurred forecasts or generating physically implausible predictions. To address these limitations, we propose a two-stage pipeline for probabilistic spatiotemporal forecasting: 1) We develop PreDiff, a conditional latent diffusion model capable of probabilistic forecasts. 2) We incorporate an explicit knowledge alignment mechanism to align forecasts with domain-specific physical constraints. This is achieved by estimating the deviation from imposed constraints at each denoising step and adjusting the transition distribution accordingly. We conduct empirical studies on two datasets: N-body MNIST, a synthetic dataset with chaotic behavior, and SEVIR, a real-world precipitation nowcasting dataset. Specifically, we impose the law of conservation of energy in N-body MNIST and anticipated precipitation intensity in SEVIR. Experiments demonstrate the effectiveness of PreDiff in handling uncertainty, incorporating domain-specific prior knowledge, and generating forecasts that exhibit high operational utility.

Mixture of experts (MoE) is a popular technique to improve capacity of large models with conditionally-activated parallel neural network modules (experts). Due to its remarkable scaling performance with sparse computation, it is widely used in modern Large Language Models (LLMs) and Large Vision Models (LVMs). However, serving such large models on edge devices is challenging due to memory constraints. Typical solutions like memory swapping or weight pruning may lead to significantly higher latency or severe accuracy loss. In this paper, we introduce SwapMoE, a framework for efficient continuous MoE-based large models serving with tunable memory budgets. The main idea of SwapMoE is to keep a small dynamic set of important experts, namely Virtual Experts, in the main memory for inference, while seamlessly maintaining how the Virtual Experts map to the actual experts. We use a profiling-guided planner to allocate the resources for SwapMoE that can fully utilize the memory budgets and bandwidth, and an importance-aware scheduler to efficiently identify, update, and use the Virtual Experts for accurate inference. To evaluate SwapMoE, we conduct experiments on multiple edge devices with state-of-the-art MoE-based Large Language Models and Large Vision Models. The results demonstrate remarkable performance of SwapMoE under various memory constraints. Specifically, SwapMoE can enable running large MoE models under tight memory budgets with similar latency to pruned compact models, while with significantly higher accuracy.

Dynamic program analysis (also known as profiling) is well-known for its powerful capabilities of identifying performance inefficiencies in software packages. Although a large number of dynamic program analysis techniques are developed in academia and industry, very few of them are widely used by software developers in their regular software developing activities. There are three major reasons. First, the dynamic analysis tools (also known as profilers) are disjoint from the coding environments such as IDEs and editors; frequently switching focus between them significantly complicates the entire cycle of software development. Second, mastering various tools to interpret their analysis results requires substantial efforts; even worse, many tools have their own design of graphical user interfaces (GUI) for data presentation, which steepens the learning curves. Third, most existing tools expose few interfaces to support user-defined analysis, which makes the tools less customizable to fulfill diverse user demands. We develop EasyView, a general solution to integrate the interpretation and visualization of various profiling results in the coding environments, which bridges software developers with profilers to provide easy and intuitive dynamic analysis during the code development cycle. The novelty of EasyView is three-fold. First, we develop a generic data format, which enables EasyView to support mainstream profilers for different languages. Second, we develop a set of customizable schemes to analyze and visualize the profiles in intuitive ways. Third, we tightly integrate EasyView with popular coding environments, such as Microsoft Visual Studio Code, with easy code exploration and user interaction. Our evaluation shows that EasyView is able to support various profilers for different languages and provide unique insights into performance inefficiencies in different domains.

Addressing the challenge of balancing security and efficiency when deploying machine learning systems in untrusted environments, such as federated learning, remains a critical concern. A promising strategy to tackle this issue involves optimizing the performance of fully homomorphic encryption (HE). Recent research highlights the efficacy of advanced caching techniques, such as Rache, in significantly enhancing the performance of HE schemes without compromising security. However, Rache is constrained by an inherent limitation: its performance overhead is heavily influenced by the characteristics of plaintext models, specifically exhibiting a caching time complexity of $\mathcal{O}(N)$, where $N$ represents the number of cached pivots based on specific radixes. This caching overhead becomes impractical for handling large-scale data. In this study, we introduce a novel \textit{constant-time} caching technique that is independent of any parameters. The core concept involves applying scalar multiplication to a single cached ciphertext, followed by the introduction of a completely new and constant-time randomness. Leveraging the inherent characteristics of constant-time construction, we coin the term ``Smuche'' for this innovative caching technique, which stands for Scalar-multiplicative Caching of Homomorphic Encryption. We implemented Smuche from scratch and conducted comparative evaluations against two baseline schemes, Rache and CKKS. Our experimental results underscore the effectiveness of Smuche in addressing the identified limitations and optimizing the performance of homomorphic encryption in practical scenarios.

Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

北京阿比特科技有限公司