This paper presents, for the first time, the Mediterraneous protocol. It is designed to support the development of an Internet of digital services, owned by their creators, and consumed by users by presenting their decentralised digital identity and a proof of service purchase. Mediterraneous is Self-Sovereign Identity (SSI) native, integrating the SSI model at the core of its working principles to overcome the limitations resulting from using pseudonyms and centralised access control of existing Web3 solutions.
This paper studies experimental designs for estimation and inference on policies with spillover effects. Units are organized into a finite number of large clusters and interact in unknown ways within each cluster. First, we introduce a single-wave experiment that, by varying the randomization across cluster pairs, estimates the marginal effect of a change in treatment probabilities, taking spillover effects into account. Using the marginal effect, we propose a test for policy optimality. Second, we design a multiple-wave experiment to estimate welfare-maximizing treatment rules. We provide strong theoretical guarantees and an implementation in a large-scale field experiment.
We present MULTIGAIN 2.0, a major extension to the controller synthesis tool MULTIGAIN, built on top of the probabilistic model checker PRISM. This new version extends MULTIGAIN's multi-objective capabilities, by allowing for the formal verification and synthesis of controllers for probabilistic systems with multi-dimensional long-run average reward structures, steady-state constraints, and linear temporal logic properties. Additionally, MULTIGAIN 2.0 can modify the underlying linear program to prevent unbounded-memory and other unintuitive solutions and visualizes Pareto curves, in the two- and three-dimensional cases, to facilitate trade-off analysis in multi-objective scenarios.
The Loewner framework is an interpolatory framework for the approximation of linear and nonlinear systems. The purpose here is to extend this framework to linear parametric systems with an arbitrary number n of parameters. One main innovation established here is the construction of data-based realizations for any number of parameters. Equally importantly, we show how to alleviate the computational burden, by avoiding the explicit construction of large-scale n-dimensional Loewner matrices of size $N \times N$. This reduces the complexity from $O(N^3)$ to about $O(N^{1.4})$, thus taming the curse of dimensionality and making the solution scalable to very large data sets. To achieve this, a new generalized multivariate rational function realization is defined. Then, we introduce the n-dimensional multivariate Loewner matrices and show that they can be computed by solving a coupled set of Sylvester equations. The null space of these Loewner matrices then allows the construction of the multivariate barycentric transfer function. The principal result of this work is to show how the null space of the n-dimensional Loewner matrix can be computed using a sequence of 1-dimensional Loewner matrices, leading to a drastic computational burden reduction. Finally, we suggest two algorithms (one direct and one iterative) to construct, directly from data, multivariate (or parametric) realizations ensuring (approximate) interpolation. Numerical examples highlight the effectiveness and scalability of the method.
In this paper, to the best of our knowledge, we make the first attempt at studying the parametric semilinear elliptic eigenvalue problems with the parametric coefficient and some power-type nonlinearities. The parametric coefficient is assumed to have an affine dependence on the countably many parameters with an appropriate class of sequences of functions. In this paper, we obtain the upper bound estimation for the mixed derivatives of the ground eigenpairs that has the same form obtained recently for the linear eigenvalue problem. The three most essential ingredients for this estimation are the parametric analyticity of the ground eigenpairs, the uniform boundedness of the ground eigenpairs, and the uniform positive differences between ground eigenvalues of linear operators. All these three ingredients need new techniques and a careful investigation of the nonlinear eigenvalue problem that will be presented in this paper. As an application, considering each parameter as a uniformly distributed random variable, we estimate the expectation of the eigenpairs using a randomly shifted quasi-Monte Carlo lattice rule and show the dimension-independent error bound.
Deep neural network based recommendation systems have achieved great success as information filtering techniques in recent years. However, since model training from scratch requires sufficient data, deep learning-based recommendation methods still face the bottlenecks of insufficient data and computational inefficiency. Meta-learning, as an emerging paradigm that learns to improve the learning efficiency and generalization ability of algorithms, has shown its strength in tackling the data sparsity issue. Recently, a growing number of studies on deep meta-learning based recommenddation systems have emerged for improving the performance under recommendation scenarios where available data is limited, e.g. user cold-start and item cold-start. Therefore, this survey provides a timely and comprehensive overview of current deep meta-learning based recommendation methods. Specifically, we propose a taxonomy to discuss existing methods according to recommendation scenarios, meta-learning techniques, and meta-knowledge representations, which could provide the design space for meta-learning based recommendation methods. For each recommendation scenario, we further discuss technical details about how existing methods apply meta-learning to improve the generalization ability of recommendation models. Finally, we also point out several limitations in current research and highlight some promising directions for future research in this area.
In this paper we develop a novel neural network model for predicting implied volatility surface. Prior financial domain knowledge is taken into account. A new activation function that incorporates volatility smile is proposed, which is used for the hidden nodes that process the underlying asset price. In addition, financial conditions, such as the absence of arbitrage, the boundaries and the asymptotic slope, are embedded into the loss function. This is one of the very first studies which discuss a methodological framework that incorporates prior financial domain knowledge into neural network architecture design and model training. The proposed model outperforms the benchmarked models with the option data on the S&P 500 index over 20 years. More importantly, the domain knowledge is satisfied empirically, showing the model is consistent with the existing financial theories and conditions related to implied volatility surface.
We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.
This paper does not describe a working system. Instead, it presents a single idea about representation which allows advances made by several different groups to be combined into an imaginary system called GLOM. The advances include transformers, neural fields, contrastive representation learning, distillation and capsules. GLOM answers the question: How can a neural network with a fixed architecture parse an image into a part-whole hierarchy which has a different structure for each image? The idea is simply to use islands of identical vectors to represent the nodes in the parse tree. If GLOM can be made to work, it should significantly improve the interpretability of the representations produced by transformer-like systems when applied to vision or language
Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.
Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.