亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent advancements in foundation models, typically trained with self-supervised learning on large-scale and diverse datasets, have shown great potential in medical image analysis. However, due to the significant spatial heterogeneity of medical imaging data, current models must tailor specific structures for different datasets, making it challenging to leverage the abundant unlabeled data. In this work, we propose a universal foundation model for medical image analysis that processes images with heterogeneous spatial properties using a unified structure. To accomplish this, we propose spatially adaptive networks (SPAD-Nets), a family of networks that dynamically adjust the structures to adapt to the spatial properties of input images, to build such a universal foundation model. We pre-train a spatial adaptive visual tokenizer (SPAD-VT) and then a spatial adaptive Vision Transformer (SPAD-ViT) via masked image modeling (MIM) on 55 public medical image datasets. The pre-training data comprises over 9 million image slices, representing the largest, most comprehensive, and most diverse dataset to our knowledge for pre-training universal foundation models for medical image analysis. The experimental results on downstream medical image classification and segmentation tasks demonstrate the superior performance and label efficiency of our model. Our code is available at //github.com/function2-llx/PUMIT.

相關內容

We study reinforcement learning with linear function approximation, unknown transition, and adversarial losses in the bandit feedback setting. Specifically, we focus on linear mixture MDPs whose transition kernel is a linear mixture model. We propose a new algorithm that attains an $\widetilde{O}(d\sqrt{HS^3K} + \sqrt{HSAK})$ regret with high probability, where $d$ is the dimension of feature mappings, $S$ is the size of state space, $A$ is the size of action space, $H$ is the episode length and $K$ is the number of episodes. Our result strictly improves the previous best-known $\widetilde{O}(dS^2 \sqrt{K} + \sqrt{HSAK})$ result in Zhao et al. (2023a) since $H \leq S$ holds by the layered MDP structure. Our advancements are primarily attributed to (i) a new least square estimator for the transition parameter that leverages the visit information of all states, as opposed to only one state in prior work, and (ii) a new self-normalized concentration tailored specifically to handle non-independent noises, originally proposed in the dynamic assortment area and firstly applied in reinforcement learning to handle correlations between different states.

Despite the success in specific tasks and scenarios, existing foundation agents, empowered by large models (LMs) and advanced tools, still cannot generalize to different scenarios, mainly due to dramatic differences in the observations and actions across scenarios. In this work, we propose the General Computer Control (GCC) setting: building foundation agents that can master any computer task by taking only screen images (and possibly audio) of the computer as input, and producing keyboard and mouse operations as output, similar to human-computer interaction. The main challenges of achieving GCC are: 1) the multimodal observations for decision-making, 2) the requirements of accurate control of keyboard and mouse, 3) the need for long-term memory and reasoning, and 4) the abilities of efficient exploration and self-improvement. To target GCC, we introduce Cradle, an agent framework with six main modules, including: 1) information gathering to extract multi-modality information, 2) self-reflection to rethink past experiences, 3) task inference to choose the best next task, 4) skill curation for generating and updating relevant skills for given tasks, 5) action planning to generate specific operations for keyboard and mouse control, and 6) memory for storage and retrieval of past experiences and known skills. To demonstrate the capabilities of generalization and self-improvement of Cradle, we deploy it in the complex AAA game Red Dead Redemption II, serving as a preliminary attempt towards GCC with a challenging target. To our best knowledge, our work is the first to enable LMM-based agents to follow the main storyline and finish real missions in complex AAA games, with minimal reliance on prior knowledge or resources. The project website is at //baai-agents.github.io/Cradle/.

Value functions are a central component of deep reinforcement learning (RL). These functions, parameterized by neural networks, are trained using a mean squared error regression objective to match bootstrapped target values. However, scaling value-based RL methods that use regression to large networks, such as high-capacity Transformers, has proven challenging. This difficulty is in stark contrast to supervised learning: by leveraging a cross-entropy classification loss, supervised methods have scaled reliably to massive networks. Observing this discrepancy, in this paper, we investigate whether the scalability of deep RL can also be improved simply by using classification in place of regression for training value functions. We demonstrate that value functions trained with categorical cross-entropy significantly improves performance and scalability in a variety of domains. These include: single-task RL on Atari 2600 games with SoftMoEs, multi-task RL on Atari with large-scale ResNets, robotic manipulation with Q-transformers, playing Chess without search, and a language-agent Wordle task with high-capacity Transformers, achieving state-of-the-art results on these domains. Through careful analysis, we show that the benefits of categorical cross-entropy primarily stem from its ability to mitigate issues inherent to value-based RL, such as noisy targets and non-stationarity. Overall, we argue that a simple shift to training value functions with categorical cross-entropy can yield substantial improvements in the scalability of deep RL at little-to-no cost.

Recent advances of locomotion controllers utilizing deep reinforcement learning (RL) have yielded impressive results in terms of achieving rapid and robust locomotion across challenging terrain, such as rugged rocks, non-rigid ground, and slippery surfaces. However, while these controllers primarily address challenges underneath the robot, relatively little research has investigated legged mobility through confined 3D spaces, such as narrow tunnels or irregular voids, which impose all-around constraints. The cyclic gait patterns resulted from existing RL-based methods to learn parameterized locomotion skills characterized by motion parameters, such as velocity and body height, may not be adequate to navigate robots through challenging confined 3D spaces, requiring both agile 3D obstacle avoidance and robust legged locomotion. Instead, we propose to learn locomotion skills end-to-end from goal-oriented navigation in confined 3D spaces. To address the inefficiency of tracking distant navigation goals, we introduce a hierarchical locomotion controller that combines a classical planner tasked with planning waypoints to reach a faraway global goal location, and an RL-based policy trained to follow these waypoints by generating low-level motion commands. This approach allows the policy to explore its own locomotion skills within the entire solution space and facilitates smooth transitions between local goals, enabling long-term navigation towards distant goals. In simulation, our hierarchical approach succeeds at navigating through demanding confined 3D environments, outperforming both pure end-to-end learning approaches and parameterized locomotion skills. We further demonstrate the successful real-world deployment of our simulation-trained controller on a real robot.

Counterfactual explanations (CEs) enhance the interpretability of machine learning models by describing what changes to an input are necessary to change its prediction to a desired class. These explanations are commonly used to guide users' actions, e.g., by describing how a user whose loan application was denied can be approved for a loan in the future. Existing approaches generate CEs by focusing on a single, fixed model, and do not provide any formal guarantees on the CEs' future validity. When models are updated periodically to account for data shift, if the generated CEs are not robust to the shifts, users' actions may no longer have the desired impacts on their predictions. This paper introduces VeriTraCER, an approach that jointly trains a classifier and an explainer to explicitly consider the robustness of the generated CEs to small model shifts. VeriTraCER optimizes over a carefully designed loss function that ensures the verifiable robustness of CEs to local model updates, thus providing deterministic guarantees to CE validity. Our empirical evaluation demonstrates that VeriTraCER generates CEs that (1) are verifiably robust to small model updates and (2) display competitive robustness to state-of-the-art approaches in handling empirical model updates including random initialization, leave-one-out, and distribution shifts.

We study online learning problems in constrained Markov decision processes (CMDPs) with adversarial losses and stochastic hard constraints. We consider two different scenarios. In the first one, we address general CMDPs, where we design an algorithm that attains sublinear regret and cumulative positive constraints violation. In the second scenario, under the mild assumption that a policy strictly satisfying the constraints exists and is known to the learner, we design an algorithm that achieves sublinear regret while ensuring that the constraints are satisfied at every episode with high probability. To the best of our knowledge, our work is the first to study CMDPs involving both adversarial losses and hard constraints. Indeed, previous works either focus on much weaker soft constraints--allowing for positive violation to cancel out negative ones--or are restricted to stochastic losses. Thus, our algorithms can deal with general non-stationary environments subject to requirements much stricter than those manageable with state-of-the-art algorithms. This enables their adoption in a much wider range of real-world applications, ranging from autonomous driving to online advertising and recommender systems.

Typically, a supervised learning model is trained using passive learning by randomly selecting unlabelled instances to annotate. This approach is effective for learning a model, but can be costly in cases where acquiring labelled instances is expensive. For example, it can be time-consuming to manually identify spam mails (labelled instances) from thousands of emails (unlabelled instances) flooding an inbox during initial data collection. Generally, we answer the above scenario with uncertainty sampling, an active learning method that improves the efficiency of supervised learning by using fewer labelled instances than passive learning. Given an unlabelled data pool, uncertainty sampling queries the labels of instances where the predicted probabilities, p, fall into the uncertainty region, i.e., $p \approx 0.5$. The newly acquired labels are then added to the existing labelled data pool to learn a new model. Nonetheless, the performance of uncertainty sampling is susceptible to the area of unpredictable responses (AUR) and the nature of the dataset. It is difficult to determine whether to use passive learning or uncertainty sampling without prior knowledge of a new dataset. To address this issue, we propose bell curve sampling, which employs a bell curve weight function to acquire new labels. With the bell curve centred at p=0.5, bell curve sampling selects instances whose predicted values are in the uncertainty area most of the time without neglecting the rest. Simulation results show that, most of the time bell curve sampling outperforms uncertainty sampling and passive learning in datasets of different natures and with AUR.

We introduce two new particle-based algorithms for learning latent variable models via marginal maximum likelihood estimation, including one which is entirely tuning-free. Our methods are based on the perspective of marginal maximum likelihood estimation as an optimization problem: namely, as the minimization of a free energy functional. One way to solve this problem is via the discretization of a gradient flow associated with the free energy. We study one such approach, which resembles an extension of Stein variational gradient descent, establishing a descent lemma which guarantees that the free energy decreases at each iteration. This method, and any other obtained as the discretization of the gradient flow, necessarily depends on a learning rate which must be carefully tuned by the practitioner in order to ensure convergence at a suitable rate. With this in mind, we also propose another algorithm for optimizing the free energy which is entirely learning rate free, based on coin betting techniques from convex optimization. We validate the performance of our algorithms across several numerical experiments, including several high-dimensional settings. Our results are competitive with existing particle-based methods, without the need for any hyperparameter tuning.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

北京阿比特科技有限公司