We present a comprehensive, user-centric approach to understand preferences in AI-based productivity agents and develop personalized solutions tailored to users' needs. Utilizing a two-phase method, we first conducted a survey with 363 participants, exploring various aspects of productivity, communication style, agent approach, personality traits, personalization, and privacy. Drawing on the survey insights, we developed a GPT-4 powered personalized productivity agent that utilizes telemetry data gathered via Viva Insights from information workers to provide tailored assistance. We compared its performance with alternative productivity-assistive tools, such as dashboard and narrative, in a study involving 40 participants. Our findings highlight the importance of user-centric design, adaptability, and the balance between personalization and privacy in AI-assisted productivity tools. By building on the insights distilled from our study, we believe that our work can enable and guide future research to further enhance productivity solutions, ultimately leading to optimized efficiency and user experiences for information workers.
Fine-grained control over large language models (LLMs) remains a significant challenge, hindering their adaptability to diverse user needs. While Reinforcement Learning from Human Feedback (RLHF) shows promise in aligning LLMs, its reliance on scalar rewards often limits its ability to capture diverse user preferences in real-world applications. To address this limitation, we introduce the Directional Preference Alignment (DPA) framework. Unlike the scalar-reward RLHF, DPA incorporates multi-objective reward modeling to represent diverse preference profiles. Additionally, DPA models user preferences as directions (i.e., unit vectors) in the reward space to achieve user-dependent preference control. Our method involves training a multi-objective reward model and then fine-tuning the LLM with a preference-conditioned variant of Rejection Sampling Finetuning (RSF), an RLHF method adopted by Llama 2. This method enjoys a better performance trade-off across various reward objectives. In comparison with the scalar-reward RLHF, DPA offers users intuitive control over LLM generation: they can arithmetically specify their desired trade-offs (e.g., more helpfulness with less verbosity). We also validate the effectiveness of DPA with real-world alignment experiments on Mistral-7B. Our method provides straightforward arithmetic control over the trade-off between helpfulness and verbosity while maintaining competitive performance with strong baselines such as Direct Preference Optimization (DPO).
In fair machine learning, one source of performance disparities between groups is over-fitting to groups with relatively few training samples. We derive group-specific bounds on the generalization error of welfare-centric fair machine learning that benefit from the larger sample size of the majority group. We do this by considering group-specific Rademacher averages over a restricted hypothesis class, which contains the family of models likely to perform well with respect to a fair learning objective (e.g., a power-mean). Our simulations demonstrate these bounds improve over a naive method, as expected by theory, with particularly significant improvement for smaller group sizes.
Similarity estimation is essential for many game AI applications, from the procedural generation of distinct assets to automated exploration with game-playing agents. While similarity metrics often substitute human evaluation, their alignment with our judgement is unclear. Consequently, the result of their application can fail human expectations, leading to e.g. unappreciated content or unbelievable agent behaviour. We alleviate this gap through a multi-factorial study of two tile-based games in two representations, where participants (N=456) judged the similarity of level triplets. Based on this data, we construct domain-specific perceptual spaces, encoding similarity-relevant attributes. We compare 12 metrics to these spaces and evaluate their approximation quality through several quantitative lenses. Moreover, we conduct a qualitative labelling study to identify the features underlying the human similarity judgement in this popular genre. Our findings inform the selection of existing metrics and highlight requirements for the design of new similarity metrics benefiting game development and research.
Recent work in CHI and CSCW has devoted increasing attention to how the design of network hospitality platforms shapes user experiences and relational outcomes. In this article, I interrogate how different risk factors emerge based on the type of exchanges these platforms facilitate. To do so, I juxtapose two prominent network hospitality platforms: one facilitating negotiated exchange (i.e., Airbnb) with another facilitating reciprocal exchange (i.e., Couchsurfing) between users. Homing in on sexual risk, an underexplored form of platform danger, and drawing on interviews with 40 female dual-platform users, I argue that the provision of binding negotiated exchange and institutional safeguards by Airbnb reduces risk through three mechanisms: casting initial guest-host relation into a buyer-seller arrangement, stabilizing interactional scripts, and formalizing sexual violence recourse. Conversely, Couchsurfing's reciprocal exchange and lack of safeguards increase sexual precarity for users both on- and off-platform. This study demonstrates how platforms with strong prosocial motivations can jeopardize sociality and concludes with implications for designs that better protect vulnerable user populations.
Recently, retrieval augmentation and tool augmentation have demonstrated a remarkable capability to expand the internal memory boundaries of language models (LMs) by providing external context. However, internal memory and external context inevitably clash, leading to knowledge conflicts within LMs. In this paper, we aim to interpret the mechanism of knowledge conflicts through the lens of information flow, and then mitigate conflicts by precise interventions at the pivotal point. We find there are some attention heads with opposite effects in the later layers, where memory heads can recall knowledge from internal memory, and context heads can retrieve knowledge from external context. Moreover, we reveal that the pivotal point at which knowledge conflicts emerge in LMs is the integration of inconsistent information flows by memory heads and context heads. Inspired by the insights, we propose a novel method called Pruning Head via PatH PatcHing (PH3), which can efficiently mitigate knowledge conflicts by pruning conflicting attention heads without updating model parameters. PH3 can flexibly control eight LMs to use internal memory ($\uparrow$ 44.0%) or external context ($\uparrow$ 38.5%). Moreover, PH3 can also improve the performance of LMs on open-domain QA tasks. We also conduct extensive experiments to demonstrate the cross-model, cross-relation, and cross-format generalization of our method.
In this study, we evaluated the performance of the state-of-the-art sequence tagging grammar error detection and correction model (SeqTagger) using Japanese university students' writing samples. With an automatic annotation toolkit, ERRANT, we first evaluated SeqTagger's performance on error correction with human expert correction as the benchmark. Then a human-annotated approach was adopted to evaluate Seqtagger's performance in error detection using a subset of the writing dataset. Results indicated a precision of 63.66% and a recall of 20.19% for error correction in the full dataset. For the subset, after manual exclusion of irrelevant errors such as semantic and mechanical ones, the model shows an adjusted precision of 97.98% and an adjusted recall of 42.98% for error detection, indicating the model's high accuracy but also its conservativeness. Thematic analysis on errors undetected by the model revealed that determiners and articles, especially the latter, were predominant. Specifically, in terms of context-independent errors, the model occasionally overlooked basic ones and faced challenges with overly erroneous or complex structures. Meanwhile, context-dependent errors, notably those related to tense and noun number, as well as those possibly influenced by the students' first language (L1), remained particularly challenging.
Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.