亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Prognosis prediction is crucial for determining optimal treatment plans for lung cancer patients. Traditionally, such predictions relied on models developed from retrospective patient data. Recently, large language models (LLMs) have gained attention for their ability to process and generate text based on extensive learned knowledge. In this study, we evaluate the potential of GPT-4o mini and GPT-3.5 in predicting the prognosis of lung cancer patients. We collected two prognosis datasets, i.e., survival and post-operative complication datasets, and designed multiple tasks to assess the models' performance comprehensively. Logistic regression models were also developed as baselines for comparison. The experimental results demonstrate that LLMs can achieve competitive, and in some tasks superior, performance in lung cancer prognosis prediction compared to data-driven logistic regression models despite not using additional patient data. These findings suggest that LLMs can be effective tools for prognosis prediction in lung cancer, particularly when patient data is limited or unavailable.

相關內容

Recent advances in generative models for medical imaging have shown promise in representing multiple modalities. However, the variability in modality availability across datasets limits the general applicability of the synthetic data they produce. To address this, we present a novel physics-informed generative model capable of synthesizing a variable number of brain MRI modalities, including those not present in the original dataset. Our approach utilizes latent diffusion models and a two-step generative process: first, unobserved physical tissue property maps are synthesized using a latent diffusion model, and then these maps are combined with a physical signal model to generate the final MRI scan. Our experiments demonstrate the efficacy of this approach in generating unseen MR contrasts and preserving physical plausibility. Furthermore, we validate the distributions of generated tissue properties by comparing them to those measured in real brain tissue.

Coronary heart disease (CHD) is a severe cardiac disease, and hence, its early diagnosis is essential as it improves treatment results and saves money on medical care. The prevailing development of quantum computing and machine learning (ML) technologies may bring practical improvement to the performance of CHD diagnosis. Quantum machine learning (QML) is receiving tremendous interest in various disciplines due to its higher performance and capabilities. A quantum leap in the healthcare industry will increase processing power and optimise multiple models. Techniques for QML have the potential to forecast cardiac disease and help in early detection. To predict the risk of coronary heart disease, a hybrid approach utilizing an ensemble machine learning model based on QML classifiers is presented in this paper. Our approach, with its unique ability to address multidimensional healthcare data, reassures the method's robustness by fusing quantum and classical ML algorithms in a multi-step inferential framework. The marked rise in heart disease and death rates impacts worldwide human health and the global economy. Reducing cardiac morbidity and mortality requires early detection of heart disease. In this research, a hybrid approach utilizes techniques with quantum computing capabilities to tackle complex problems that are not amenable to conventional machine learning algorithms and to minimize computational expenses. The proposed method has been developed in the Raspberry Pi 5 Graphics Processing Unit (GPU) platform and tested on a broad dataset that integrates clinical and imaging data from patients suffering from CHD and healthy controls. Compared to classical machine learning models, the accuracy, sensitivity, F1 score, and specificity of the proposed hybrid QML model used with CHD are manifold higher.

Human motion prediction is crucial for human-centric multimedia understanding and interacting. Current methods typically rely on ground truth human poses as observed input, which is not practical for real-world scenarios where only raw visual sensor data is available. To implement these methods in practice, a pre-phrase of pose estimation is essential. However, such two-stage approaches often lead to performance degradation due to the accumulation of errors. Moreover, reducing raw visual data to sparse keypoint representations significantly diminishes the density of information, resulting in the loss of fine-grained features. In this paper, we propose \textit{LiDAR-HMP}, the first single-LiDAR-based 3D human motion prediction approach, which receives the raw LiDAR point cloud as input and forecasts future 3D human poses directly. Building upon our novel structure-aware body feature descriptor, LiDAR-HMP adaptively maps the observed motion manifold to future poses and effectively models the spatial-temporal correlations of human motions for further refinement of prediction results. Extensive experiments show that our method achieves state-of-the-art performance on two public benchmarks and demonstrates remarkable robustness and efficacy in real-world deployments.

A pandemic is the spread of a disease across large regions, and can have devastating costs to the society in terms of health, economic and social. As such, the study of effective pandemic mitigation strategies can yield significant positive impact on the society. A pandemic can be mathematically described using a compartmental model, such as the Susceptible Infected Removed (SIR) model. In this paper, we extend the solution equations of the SIR model to a state transition model with lockdowns. We formalize a metric hybrid planning problem based on this state transition model, and solve it using a metric hybrid planner. We improve the runtime effectiveness of the metric hybrid planner with the addition of valid inequalities, and demonstrate the success of our approach both theoretically and experimentally under various challenging settings.

Predicting future disease progression risk from medical images is challenging due to patient heterogeneity, and subtle or unknown imaging biomarkers. Moreover, deep learning (DL) methods for survival analysis are susceptible to image domain shifts across scanners. We tackle these issues in the task of predicting late dry Age-related Macular Degeneration (dAMD) onset from retinal OCT scans. We propose a novel DL method for survival prediction to jointly predict from the current scan a risk score, inversely related to time-to-conversion, and the probability of conversion within a time interval $t$. It uses a family of parallel hyperplanes generated by parameterizing the bias term as a function of $t$. In addition, we develop unsupervised losses based on intra-subject image pairs to ensure that risk scores increase over time and that future conversion predictions are consistent with AMD stage prediction using actual scans of future visits. Such losses enable data-efficient fine-tuning of the trained model on new unlabeled datasets acquired with a different scanner. Extensive evaluation on two large datasets acquired with different scanners resulted in a mean AUROCs of 0.82 for Dataset-1 and 0.83 for Dataset-2, across prediction intervals of 6,12 and 24 months.

In recent years, Solving partial differential equations has shifted the focus of traditional neural network studies from finite-dimensional Euclidean spaces to generalized functional spaces in research. A novel methodology is to learn an operator as a means of approximating the mapping between outputs. Currently, researchers have proposed a variety of operator architectures. Nevertheless, the majority of these architectures adopt an iterative update architecture, whereby a single operator is learned from the same function space. In practical physical science problems, the numerical solutions of partial differential equations are complex, and a serial single operator is unable to accurately approximate the intricate mapping between input and output. So, We propose a deep parallel operator model (DPNO) for efficiently and accurately solving partial differential equations. DPNO employs convolutional neural networks to extract local features and map data into distinct latent spaces. Designing a parallel block of double Fourier neural operators to solve the iterative error problem. DPNO approximates complex mappings between inputs and outputs by learning multiple operators in different potential spaces in parallel blocks. DPNO achieved the best performance on five of them, with an average improvement of 10.5\%, and ranked second on one dataset.

Estimating heterogeneous treatment effect (HTE) for survival outcomes has gained increasing attention, as it captures the variation in treatment efficacy across patients or subgroups in delaying disease progression. However, most existing methods focus on post-hoc subgroup identification rather than simultaneously estimating HTE and selecting relevant subgroups. In this paper, we propose an interpretable HTE estimation framework that integrates three meta-learners that simultaneously estimate CATE for survival outcomes and identify predictive subgroups. We evaluated the performance of our method through comprehensive simulation studies across various randomized clinical trial (RCT) settings. Additionally, we demonstrated its application in a large RCT for age-related macular degeneration (AMD), a polygenic progressive eye disease, to estimate the HTE of an antioxidant and mineral supplement on time-to-AMD progression and to identify genetics-based subgroups with enhanced treatment effects. Our method offers a direct interpretation of the estimated HTE and provides evidence to support precision healthcare.

Methods for estimating heterogeneous treatment effects (HTE) from observational data have largely focused on continuous or binary outcomes, with less attention paid to survival outcomes and almost none to settings with competing risks. In this work, we develop censoring unbiased transformations (CUTs) for survival outcomes both with and without competing risks. After converting time-to-event outcomes using these CUTs, direct application of HTE learners for continuous outcomes yields consistent estimates of heterogeneous cumulative incidence effects, total effects, and separable direct effects. Our CUTs enable application of a much larger set of state of the art HTE learners for censored outcomes than had previously been available, especially in competing risks settings. We provide generic model-free learner-specific oracle inequalities bounding the finite-sample excess risk. The oracle efficiency results depend on the oracle selector and estimated nuisance functions from all steps involved in the transformation. We demonstrate the empirical performance of the proposed methods in simulation studies.

Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.

The amount of publicly available biomedical literature has been growing rapidly in recent years, yet question answering systems still struggle to exploit the full potential of this source of data. In a preliminary processing step, many question answering systems rely on retrieval models for identifying relevant documents and passages. This paper proposes a weighted cosine distance retrieval scheme based on neural network word embeddings. Our experiments are based on publicly available data and tasks from the BioASQ biomedical question answering challenge and demonstrate significant performance gains over a wide range of state-of-the-art models.

北京阿比特科技有限公司