亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent years, DNS over Encrypted (DoE) methods have been regarded as a novel trend within the realm of the DNS ecosystem. In these DoE methods, DNS over HTTPS (DoH) provides encryption to protect data confidentiality while providing better obfuscation to avoid censorship by multiplexing port 443 with web services. This development introduced certain inconveniences in discovering publicly available DoH services. In this paper, we propose the E-DoH method for elegant and efficient DoH service detection. First, we optimized the probing mechanism to enable a single DoH connection to accomplish multiple tasks including service discovery, correctness validation and dependency construction. Second, we propose an efficient DoH detection tool. This tool can enhance probing efficiency while significantly reduce the required traffic volume. Third, based on the above optimization methods, we conducted an exploration of the IPv4 space and performed an in-depth analysis of DoH based on the collected information. Through experiments, our approach demonstrates a remarkable 80% improvement in time efficiency, and only requires 4%-20% traffic volume to complete the detection task. In wild detection, our approach discovered 46k DoH services, which nearly doubles the number discovered by the state-of-the-art. Based on the collected data, we present several intriguing conclusions about the current DoH service ecosystem.

相關內容

域名系統(英文: Domain  Name  System, DNS)是因特網的一項核心服務,它作為可以將域名和IP地址相互映射的一個分布式數據庫,能夠使人更方便的訪問互聯網,而不用去記住能夠被機器直接讀取的IP數串。

Owing to their powerful semantic reasoning capabilities, Large Language Models (LLMs) have been effectively utilized as recommenders, achieving impressive performance. However, the high inference latency of LLMs significantly restricts their practical deployment. To address this issue, this work investigates knowledge distillation from cumbersome LLM-based recommendation models to lightweight conventional sequential models. It encounters three challenges: 1) the teacher's knowledge may not always be reliable; 2) the capacity gap between the teacher and student makes it difficult for the student to assimilate the teacher's knowledge; 3) divergence in semantic space poses a challenge to distill the knowledge from embeddings. To tackle these challenges, this work proposes a novel distillation strategy, DLLM2Rec, specifically tailored for knowledge distillation from LLM-based recommendation models to conventional sequential models. DLLM2Rec comprises: 1) Importance-aware ranking distillation, which filters reliable and student-friendly knowledge by weighting instances according to teacher confidence and student-teacher consistency; 2) Collaborative embedding distillation integrates knowledge from teacher embeddings with collaborative signals mined from the data. Extensive experiments demonstrate the effectiveness of the proposed DLLM2Rec, boosting three typical sequential models with an average improvement of 47.97%, even enabling them to surpass LLM-based recommenders in some cases.

The emergence of foundation models, such as the Segment Anything Model (SAM), has sparked interest in Parameter-Efficient Fine-Tuning (PEFT) methods that tailor these large models to application domains outside their training data. However, different PEFT techniques modify the representation of a model differently, making it a non-trivial task to select the most appropriate method for the domain of interest. We propose a new framework, Mixture-of-PEFTs methods (MoPEFT), that is inspired by traditional Mixture-of-Experts (MoE) methodologies and is utilized for fine-tuning SAM. Our MoPEFT framework incorporates three different PEFT techniques as submodules and dynamically learns to activate the ones that are best suited for a given data-task setup. We test our method on the Segment Anything Model and show that MoPEFT consistently outperforms other fine-tuning methods on the MESS benchmark.

The integration of artificial intelligence (AI) and mobile networks is regarded as one of the most important scenarios for 6G. In 6G, a major objective is to realize the efficient transmission of task-relevant data. Then a key problem arises, how to design collaborative AI models for the device side and the network side, so that the transmitted data between the device and the network is efficient enough, which means the transmission overhead is low but the AI task result is accurate. In this paper, we propose the multi-link information bottleneck (ML-IB) scheme for such collaborative models design. We formulate our problem based on a novel performance metric, which can evaluate both task accuracy and transmission overhead. Then we introduce a quantizer that is adjustable in the quantization bit depth, amplitudes, and breakpoints. Given the infeasibility of calculating our proposed metric on high-dimensional data, we establish a variational upper bound for this metric. However, due to the incorporation of quantization, the closed form of the variational upper bound remains uncomputable. Hence, we employ the Log-Sum Inequality to derive an approximation and provide a theoretical guarantee. Based on this, we devise the quantized multi-link information bottleneck (QML-IB) algorithm for collaborative AI models generation. Finally, numerical experiments demonstrate the superior performance of our QML-IB algorithm compared to the state-of-the-art algorithm.

In recent years, the field of Legal Tech has risen in prevalence, as the Natural Language Processing (NLP) and legal disciplines have combined forces to digitalize legal processes. Amidst the steady flow of research solutions stemming from the NLP domain, the study of use cases has fallen behind, leading to a number of innovative technical methods without a place in practice. In this work, we aim to build a structured overview of Legal Tech use cases, grounded in NLP literature, but also supplemented by voices from legal practice in Germany. Based upon a Systematic Literature Review, we identify seven categories of NLP technologies for the legal domain, which are then studied in juxtaposition to 22 legal use cases. In the investigation of these use cases, we identify 15 ethical, legal, and social aspects (ELSA), shedding light on the potential concerns of digitally transforming the legal domain.

Language Models (LMs) acquire parametric knowledge from their training process, embedding it within their weights. The increasing scalability of LMs, however, poses significant challenges for understanding a model's inner workings and further for updating or correcting this embedded knowledge without the significant cost of retraining. This underscores the importance of unveiling exactly what knowledge is stored and its association with specific model components. Instance Attribution (IA) and Neuron Attribution (NA) offer insights into this training-acquired knowledge, though they have not been compared systematically. Our study introduces a novel evaluation framework to quantify and compare the knowledge revealed by IA and NA. To align the results of the methods we introduce the attribution method NA-Instances to apply NA for retrieving influential training instances, and IA-Neurons to discover important neurons of influential instances discovered by IA. We further propose a comprehensive list of faithfulness tests to evaluate the comprehensiveness and sufficiency of the explanations provided by both methods. Through extensive experiments and analysis, we demonstrate that NA generally reveals more diverse and comprehensive information regarding the LM's parametric knowledge compared to IA. Nevertheless, IA provides unique and valuable insights into the LM's parametric knowledge, which are not revealed by NA. Our findings further suggest the potential of a synergistic approach of combining the diverse findings of IA and NA for a more holistic understanding of an LM's parametric knowledge.

Large Language Models (LLMs) are susceptible to `jailbreaking' prompts, which can induce the generation of harmful content. This paper demonstrates that moderate WANDA pruning (Sun et al., 2023) can increase their resistance to such attacks without the need for fine-tuning, while maintaining performance on standard benchmarks. Our findings suggest that the benefits of pruning correlate with the initial safety levels of the model, indicating a regularizing effect of WANDA pruning. We introduce a dataset of 225 harmful tasks across five categories to systematically evaluate this safety enhancement. We argue that safety improvements can be understood through a regularization perspective. First, we show that pruning helps LLMs focus more effectively on task-relevant tokens within jailbreaking prompts. Then, we analyze the effects of pruning on the perplexity of malicious prompts before and after their integration into jailbreak templates. Finally, we demonstrate statistically significant performance improvements under domain shifts when applying WANDA to linear models.

Due to the popularity of the FaaS programming model, there is now a wide variety of commercial and open-source FaaS systems. Hence, for comparison of different FaaS systems and their configuration options, FaaS application developers rely on FaaS benchmarking frameworks. Existing frameworks, however, tend to evaluate only single isolated aspects, a more holistic application-centric benchmarking framework is still missing. In previous work, we proposed BeFaaS, an extensible application-centric benchmarking framework for FaaS environments that focuses on the evaluation of FaaS platforms through realistic and typical examples of FaaS applications. In this extended paper, we (i) enhance our benchmarking framework with additional features for distributed FaaS setups, (ii) design application benchmarks reflecting typical FaaS use cases, and (iii) use them to run extensive experiments with commercial cloud FaaS platforms (AWS Lambda, Azure Functions, Google Cloud Functions) and the tinyFaaS edge serverless platform. BeFaaS now includes four FaaS application-centric benchmarks, is extensible for additional workload profiles and platforms, and supports federated benchmark runs in which the benchmark application is distributed over multiple FaaS systems while collecting fine-grained measurement results for drill-down analysis. Our experiment results show that (i) network transmission is a major contributor to response latency for function chains, (ii) this effect is exacerbated in hybrid edge-cloud deployments, (iii) the trigger delay between a published event and the start of the triggered function ranges from about 100ms for AWS Lambda to 800ms for Google Cloud Functions, and (iv) Azure Functions shows the best cold start behavior for our workloads.

Theory of Mind (ToM) refers to the ability of individuals to attribute mental states to others. While Large Language Models (LLMs) have shown some promise with ToM ability, they still struggle with complex ToM reasoning. Our approach leverages an external symbolic executor, specifically the SMCDEL model checker, and fine-tuning to improve the ToM reasoning ability of LLMs. In our approach, an LLM is first fine-tuned through pairs of natural language and symbolic formulation representation of ToM problems and is then instructed to generate the symbolic formulation with a one-shot in-context example. The generated symbolic formulation is then executed by the SMCDEL model checker to perform transparent and verifiable ToM reasoning and give the final result. We demonstrate that our approach, ToM-LM, shows a significant improvement over all the constructed baselines. Our study proposes a novel view about externalizing a particular component of ToM reasoning, mainly reasoning about beliefs, and suggests generalizing it to other aspects of ToM reasoning.

Big models have achieved revolutionary breakthroughs in the field of AI, but they might also pose potential concerns. Addressing such concerns, alignment technologies were introduced to make these models conform to human preferences and values. Despite considerable advancements in the past year, various challenges lie in establishing the optimal alignment strategy, such as data cost and scalable oversight, and how to align remains an open question. In this survey paper, we comprehensively investigate value alignment approaches. We first unpack the historical context of alignment tracing back to the 1920s (where it comes from), then delve into the mathematical essence of alignment (what it is), shedding light on the inherent challenges. Following this foundation, we provide a detailed examination of existing alignment methods, which fall into three categories: Reinforcement Learning, Supervised Fine-Tuning, and In-context Learning, and demonstrate their intrinsic connections, strengths, and limitations, helping readers better understand this research area. In addition, two emerging topics, personal alignment, and multimodal alignment, are also discussed as novel frontiers in this field. Looking forward, we discuss potential alignment paradigms and how they could handle remaining challenges, prospecting where future alignment will go.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

北京阿比特科技有限公司