亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents GPFC, a novel Graphics Processing Unit (GPU) Phase Folding and Convolutional Neural Network (CNN) system to detect exoplanets using the transit method. We devise a fast folding algorithm parallelized on a GPU to amplify low signal-to-noise ratio transit signals, allowing a search at high precision and speed. A CNN trained on two million synthetic light curves reports a score indicating the likelihood of a planetary signal at each period. GPFC improves on speed by three orders of magnitude over the predominant Box-fitting Least Squares (BLS) method. Our simulation results show GPFC achieves 97% training accuracy, higher true positive rate at the same false positive rate of detection, and higher precision at the same recall rate when compared to BLS. GPFC recovers 100% of known ultra-short-period planets in Kepler light curves from a blind search. These results highlight the promise of GPFC as an alternative approach to the traditional BLS algorithm for finding new transiting exoplanets in data taken with Kepler and other space transit missions such as K2, TESS and future PLATO and Earth 2.0.

相關內容

Recent studies have uncovered the potential of Large Language Models (LLMs) in addressing complex sequential decision-making tasks through the provision of high-level instructions. However, LLM-based agents lack specialization in tackling specific target problems, particularly in real-time dynamic environments. Additionally, deploying an LLM-based agent in practical scenarios can be both costly and time-consuming. On the other hand, reinforcement learning (RL) approaches train agents that specialize in the target task but often suffer from low sampling efficiency and high exploration costs. In this paper, we introduce a novel framework that addresses these challenges by training a smaller, specialized student RL agent using instructions from an LLM-based teacher agent. By incorporating the guidance from the teacher agent, the student agent can distill the prior knowledge of the LLM into its own model. Consequently, the student agent can be trained with significantly less data. Moreover, through further training with environment feedback, the student agent surpasses the capabilities of its teacher for completing the target task. We conducted experiments on challenging MiniGrid and Habitat environments, specifically designed for embodied AI research, to evaluate the effectiveness of our framework. The results clearly demonstrate that our approach achieves superior performance compared to strong baseline methods. Our code is available at //github.com/ZJLAB-AMMI/LLM4Teach.

This paper introduces a novel (HDAG - Harmonic Detection for Auditory Gain) method for speech intelligibility enhancement in noisy scenarios. In the proposed scheme, a series of selective Gammachirp filters are adopted to emphasize the harmonic components of speech reducing the masking effects of acoustic noises. The fundamental frequency are estimated by the HHT-Amp technique. Harmonic patterns estimated with low accuracy are detected and adjusted according the FSFFE low/high pitch separation. The central frequencies of the filterbank are defined considering the third octave subbands which are best suited to cover the regions most relevant to intelligibility. Before signal reconstruction, the gammachirp filtered components are amplified by gain factors regulated by FSFFE classification. The proposed HDAG solution and three baseline techniques are examined considering six background noises with four signal-to-noise ratios. Three objective measures are adopted for the evaluation of speech intelligibility and quality. Several experiments are conducted to demonstrate that the proposed scheme achieves better speech intelligibility improvement when compared to the competing approaches. A perceptual listening test is further considered and corroborates with the objective results.

We introduce VL2NL, a Large Language Model (LLM) framework that generates rich and diverse NL datasets using only Vega-Lite specifications as input, thereby streamlining the development of Natural Language Interfaces (NLIs) for data visualization. To synthesize relevant chart semantics accurately and enhance syntactic diversity in each NL dataset, we leverage 1) a guided discovery incorporated into prompting so that LLMs can steer themselves to create faithful NL datasets in a self-directed manner; 2) a score-based paraphrasing to augment NL syntax along with four language axes. We also present a new collection of 1,981 real-world Vega-Lite specifications that have increased diversity and complexity than existing chart collections. When tested on our chart collection, VL2NL extracted chart semantics and generated L1/L2 captions with 89.4% and 76.0% accuracy, respectively. It also demonstrated generating and paraphrasing utterances and questions with greater diversity compared to the benchmarks. Last, we discuss how our NL datasets and framework can be utilized in real-world scenarios. The codes and chart collection are available at //github.com/hyungkwonko/chart-llm.

We propose a novel technique to enhance Knowledge Graph Reasoning by combining Graph Convolution Neural Network (GCN) with the Attention Mechanism. This approach utilizes the Attention Mechanism to examine the relationships between entities and their neighboring nodes, which helps to develop detailed feature vectors for each entity. The GCN uses shared parameters to effectively represent the characteristics of adjacent entities. We first learn the similarity of entities for node representation learning. By integrating the attributes of the entities and their interactions, this method generates extensive implicit feature vectors for each entity, improving performance in tasks including entity classification and link prediction, outperforming traditional neural network models. To conclude, this work provides crucial methodological support for a range of applications, such as search engines, question-answering systems, recommendation systems, and data integration tasks.

In this paper, we explore low-power custom quantised Multi-Layer Perceptrons (MLPs) as an Intrusion Detection System (IDS) for automotive controller area network (CAN). We utilise the FINN framework from AMD/Xilinx to quantise, train and generate hardware IP of our MLP to detect denial of service (DoS) and fuzzying attacks on CAN network, using ZCU104 (XCZU7EV) FPGA as our target ECU architecture with integrated IDS capabilities. Our approach achieves significant improvements in latency (0.12 ms per-message processing latency) and inference energy consumption (0.25 mJ per inference) while achieving similar classification performance as state-of-the-art approaches in the literature.

This study presents a novel approach that synergizes community detection algorithms with various Graph Neural Network (GNN) models to bolster link prediction in scientific literature networks. By integrating the Louvain community detection algorithm into our GNN frameworks, we consistently enhance performance across all models tested. For example, integrating Louvain with the GAT model resulted in an AUC score increase from 0.777 to 0.823, exemplifying the typical improvements observed. Similar gains are noted when Louvain is paired with other GNN architectures, confirming the robustness and effectiveness of incorporating community-level insights. This consistent uplift in performance reflected in our extensive experimentation on bipartite graphs of scientific collaborations and citations highlights the synergistic potential of combining community detection with GNNs to overcome common link prediction challenges such as scalability and resolution limits. Our findings advocate for the integration of community structures as a significant step forward in the predictive accuracy of network science models, offering a comprehensive understanding of scientific collaboration patterns through the lens of advanced machine learning techniques.

This research introduces a novel approach, MBO-NB, that leverages Migrating Birds Optimization (MBO) coupled with Naive Bayes as an internal classifier to address feature selection challenges in text classification having large number of features. Focusing on computational efficiency, we preprocess raw data using the Information Gain algorithm, strategically reducing the feature count from an average of 62221 to 2089. Our experiments demonstrate MBO-NB's superior effectiveness in feature reduction compared to other existing techniques, emphasizing an increased classification accuracy. The successful integration of Naive Bayes within MBO presents a well-rounded solution. In individual comparisons with Particle Swarm Optimization (PSO), MBO-NB consistently outperforms by an average of 6.9% across four setups. This research offers valuable insights into enhancing feature selection methods, providing a scalable and effective solution for text classification

This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We employ eight distinct datasets that encompass aspects including entity, relation and event extraction, link prediction, and question answering. Empirically, our findings suggest that GPT-4 outperforms ChatGPT in the majority of tasks and even surpasses fine-tuned models in certain reasoning and question-answering datasets. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, which culminates in the presentation of the Virtual Knowledge Extraction task and the development of the VINE dataset. Drawing on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs for KG construction and reasoning, which aims to chart the future of this field and offer exciting opportunities for advancement. We anticipate that our research can provide invaluable insights for future undertakings of KG\footnote{Code and datasets will be available in //github.com/zjunlp/AutoKG.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

北京阿比特科技有限公司