亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Weakly-Supervised Semantic Segmentation (WSSS) aims to train segmentation models using image data with only image-level supervision. Since precise pixel-level annotations are not accessible, existing methods typically focus on producing pseudo masks for training segmentation models by refining CAM-like heatmaps. However, the produced heatmaps may capture only the discriminative image regions of object categories or the associated co-occurring backgrounds. To address the issues, we propose a Semantic Prompt Learning for WSSS (SemPLeS) framework, which learns to effectively prompt the CLIP latent space to enhance the semantic alignment between the segmented regions and the target object categories. More specifically, we propose Contrastive Prompt Learning and Prompt-guided Semantic Refinement to learn the prompts that adequately describe and suppress the co-occurring backgrounds associated with each target object category. In this way, SemPLeS can perform better semantic alignment between object regions and the associated class labels, resulting in desired pseudo masks for training the segmentation model. The proposed SemPLeS framework achieves SOTA performance on the standard WSSS benchmarks, PASCAL VOC and MS COCO, and shows compatibility with other WSSS methods. The source codes are provided in the supplementary.

相關內容

Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly. Currently, leveraging semantic information to enhance IQA is a crucial research direction. Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness. However, the generalist nature of these pre-trained Vision-Language (VL) models often renders them suboptimal for IQA-specific tasks. Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings. Existing prompt-based VL models overly focus on incremental semantic information from text, neglecting the rich insights available from visual data analysis. This imbalance limits their performance improvements in IQA tasks. This paper introduces an innovative multi-modal prompt-based methodology for IQA. Our approach employs carefully crafted prompts that synergistically mine incremental semantic information from both visual and linguistic data. Specifically, in the visual branch, we introduce a multi-layer prompt structure to enhance the VL model's adaptability. In the text branch, we deploy a dual-prompt scheme that steers the model to recognize and differentiate between scene category and distortion type, thereby refining the model's capacity to assess image quality. Our experimental findings underscore the effectiveness of our method over existing Blind Image Quality Assessment (BIQA) approaches. Notably, it demonstrates competitive performance across various datasets. Our method achieves Spearman Rank Correlation Coefficient (SRCC) values of 0.961(surpassing 0.946 in CSIQ) and 0.941 (exceeding 0.930 in KADID), illustrating its robustness and accuracy in diverse contexts.

Employing massive Mobile AI-Generated Content (AIGC) Service Providers (MASPs) with powerful models, high-quality AIGC services can become accessible for resource-constrained end users. However, this advancement, referred to as mobile AIGC, also introduces a significant challenge: users should download large AIGC outputs from the MASPs, leading to substantial bandwidth consumption and potential transmission failures. In this paper, we apply cross-modal Generative Semantic Communications (G-SemCom) in mobile AIGC to overcome wireless bandwidth constraints. Specifically, we utilize a series of cross-modal attention maps to indicate the correlation between user prompts and each part of AIGC outputs. In this way, the MASP can analyze the prompt context and filter the most semantically important content efficiently. Only semantic information is transmitted, with which users can recover the entire AIGC output with high quality while saving mobile bandwidth. Since the transmitted information not only preserves the semantics but also prompts the recovery, we formulate a joint semantic encoding and prompt engineering problem to optimize the bandwidth allocation among users. Particularly, we present a human-perceptual metric named Joint Perpetual Similarity and Quality (JPSQ), which is fused by two learning-based measurements regarding semantic similarity and aesthetic quality, respectively. Furthermore, we develop the Attention-aware Deep Diffusion (ADD) algorithm, which learns attention maps and leverages the diffusion process to enhance the environment exploration ability. Extensive experiments demonstrate that our proposal can reduce the bandwidth consumption of mobile users by 49.4% on average, with almost no perceptual difference in AIGC output quality. Moreover, the ADD algorithm shows superior performance over baseline DRL methods, with 1.74x higher overall reward.

Large-scale text-to-image diffusion models have been a ground-breaking development in generating convincing images following an input text prompt. The goal of image editing research is to give users control over the generated images by modifying the text prompt. Current image editing techniques predominantly hinge on DDIM inversion as a prevalent practice rooted in Latent Diffusion Models (LDM). However, the large pretrained T2I models working on the latent space suffer from losing details due to the first compression stage with an autoencoder mechanism. Instead, other mainstream T2I pipeline working on the pixel level, such as Imagen and DeepFloyd-IF, circumvents the above problem. They are commonly composed of multiple stages, typically starting with a text-to-image stage and followed by several super-resolution stages. In this pipeline, the DDIM inversion fails to find the initial noise and generate the original image given that the super-resolution diffusion models are not compatible with the DDIM technique. According to our experimental findings, iteratively concatenating the noisy image as the condition is the root of this problem. Based on this observation, we develop an iterative inversion (IterInv) technique for this category of T2I models and verify IterInv with the open-source DeepFloyd-IF model.Specifically, IterInv employ NTI as the inversion and reconstruction of low-resolution image generation. In stages 2 and 3, we update the latent variance at each timestep to find the deterministic inversion trace and promote the reconstruction process. By combining our method with a popular image editing method, we prove the application prospects of IterInv. The code will be released upon acceptance. The code is available at \url{//github.com/Tchuanm/IterInv.git}.

Conditional Generative Adversarial Networks (CGANs) exhibit significant potential in supervised learning model training by virtue of their ability to generate realistic labeled images. However, numerous studies have indicated the privacy leakage risk in CGANs models. The solution DPCGAN, incorporating the differential privacy framework, faces challenges such as heavy reliance on labeled data for model training and potential disruptions to original gradient information due to excessive gradient clipping, making it difficult to ensure model accuracy. To address these challenges, we present a privacy-preserving training framework called PATE-TripleGAN. This framework incorporates a classifier to pre-classify unlabeled data, establishing a three-party min-max game to reduce dependence on labeled data. Furthermore, we present a hybrid gradient desensitization algorithm based on the Private Aggregation of Teacher Ensembles (PATE) framework and Differential Private Stochastic Gradient Descent (DPSGD) method. This algorithm allows the model to retain gradient information more effectively while ensuring privacy protection, thereby enhancing the model's utility. Privacy analysis and extensive experiments affirm that the PATE-TripleGAN model can generate a higher quality labeled image dataset while ensuring the privacy of the training data.

Vertical Federated Learning (VFL) is a category of Federated Learning in which models are trained collaboratively among parties with vertically partitioned data. Typically, in a VFL scenario, the labels of the samples are kept private from all the parties except for the aggregating server, that is the label owner. Nevertheless, recent works discovered that by exploiting gradient information returned by the server to bottom models, with the knowledge of only a small set of auxiliary labels on a very limited subset of training data points, an adversary can infer the private labels. These attacks are known as label inference attacks in VFL. In our work, we propose a novel framework called KDk, that combines Knowledge Distillation and k-anonymity to provide a defense mechanism against potential label inference attacks in a VFL scenario. Through an exhaustive experimental campaign we demonstrate that by applying our approach, the performance of the analyzed label inference attacks decreases consistently, even by more than 60%, maintaining the accuracy of the whole VFL almost unaltered.

Despite the tremendous advances in machine learning (ML), training with imbalanced data still poses challenges in many real-world applications. Among a series of diverse techniques to solve this problem, sampling algorithms are regarded as an efficient solution. However, the problem is more fundamental, with many works emphasizing the importance of instance hardness. This issue refers to the significance of managing unsafe or potentially noisy instances that are more likely to be misclassified and serve as the root cause of poor classification performance. This paper introduces HardVis, a visual analytics system designed to handle instance hardness mainly in imbalanced classification scenarios. Our proposed system assists users in visually comparing different distributions of data types, selecting types of instances based on local characteristics that will later be affected by the active sampling method, and validating which suggestions from undersampling or oversampling techniques are beneficial for the ML model. Additionally, rather than uniformly undersampling/oversampling a specific class, we allow users to find and sample easy and difficult to classify training instances from all classes. Users can explore subsets of data from different perspectives to decide all those parameters, while HardVis keeps track of their steps and evaluates the model's predictive performance in a test set separately. The end result is a well-balanced data set that boosts the predictive power of the ML model. The efficacy and effectiveness of HardVis are demonstrated with a hypothetical usage scenario and a use case. Finally, we also look at how useful our system is based on feedback we received from ML experts.

Text-video retrieval aims to find the most relevant cross-modal samples for a given query. Recent methods focus on modeling the whole spatial-temporal relations. However, since video clips contain more diverse content than captions, the model aligning these asymmetric video-text pairs has a high risk of retrieving many false positive results. In this paper, we propose Probabilistic Token Aggregation (\textit{ProTA}) to handle cross-modal interaction with content asymmetry. Specifically, we propose dual partial-related aggregation to disentangle and re-aggregate token representations in both low-dimension and high-dimension spaces. We propose token-based probabilistic alignment to generate token-level probabilistic representation and maintain the feature representation diversity. In addition, an adaptive contrastive loss is proposed to learn compact cross-modal distribution space. Based on extensive experiments, \textit{ProTA} achieves significant improvements on MSR-VTT (50.9%), LSMDC (25.8%), and DiDeMo (47.2%).

We introduce CogME, a cognition-inspired, multi-dimensional evaluation metric designed for AI models focusing on story understanding. CogME is a framework grounded in human thinking strategies and story elements that involve story understanding. With a specific breakdown of the questions, this approach provides a nuanced assessment revealing not only AI models' particular strengths and weaknesses but also the characteristics of the benchmark dataset. Our case study with the DramaQA dataset demonstrates a refined analysis of the model and the benchmark dataset. We argue the need for metrics based on understanding the nature of tasks and designed to align closely with human cognitive processes. This approach provides insights beyond traditional overall scores and paves the way for more sophisticated AI development targeting higher cognitive functions.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens, we rely on conventional masks to learn inter-relations between corrupted tokens and context via autoencoding, and pseudo masks to learn intra-relations between masked spans via partially autoregressive modeling. With well-designed position embeddings and self-attention masks, the context encodings are reused to avoid redundant computation. Moreover, conventional masks used for autoencoding provide global masking information, so that all the position embeddings are accessible in partially autoregressive language modeling. In addition, the two tasks pre-train a unified language model as a bidirectional encoder and a sequence-to-sequence decoder, respectively. Our experiments show that the unified language models pre-trained using PMLM achieve new state-of-the-art results on a wide range of natural language understanding and generation tasks across several widely used benchmarks.

北京阿比特科技有限公司