亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This book is meant to provide an introduction to linear models and the theories behind them. Our goal is to give a rigorous introduction to the readers with prior exposure to ordinary least squares. In machine learning, the output is usually a nonlinear function of the input. Deep learning even aims to find a nonlinear dependence with many layers, which require a large amount of computation. However, most of these algorithms build upon simple linear models. We then describe linear models from different perspectives and find the properties and theories behind the models. The linear model is the main technique in regression problems, and the primary tool for it is the least squares approximation, which minimizes a sum of squared errors. This is a natural choice when we're interested in finding the regression function which minimizes the corresponding expected squared error. This book is primarily a summary of purpose, significance of important theories behind linear models, e.g., distribution theory and the minimum variance estimator. We first describe ordinary least squares from three different points of view, upon which we disturb the model with random noise and Gaussian noise. Through Gaussian noise, the model gives rise to the likelihood so that we introduce a maximum likelihood estimator. It also develops some distribution theories via this Gaussian disturbance. The distribution theory of least squares will help us answer various questions and introduce related applications. We then prove least squares is the best unbiased linear model in the sense of mean squared error, and most importantly, it actually approaches the theoretical limit. We end up with linear models with the Bayesian approach and beyond.

相關內容

對于給定d個屬性描述的示例x=(x1,x2,......,xd),通過屬性的線性組合來進行預測。一般的寫法如下: f(x)=w'x+b,因此,線性模型具有很好的解釋性(understandability,comprehensibility),參數w代表每個屬性在回歸過程中的重要程度。

Moment models with suitable closure can lead to accurate and computationally efficient solvers for particle transport. Hence, we propose a new asymptotic preserving scheme for the M1 model of linear transport that works uniformly for any Knudsen number. Our idea is to apply the M1 closure at the numerical level to an existing asymptotic preserving scheme for the corresponding kinetic equation, namely the Unified Gas Kinetic scheme (UGKS) originally proposed in [27] and extended to linear transport in [24]. In order to ensure the moments realizability in this new scheme, the UGKS positivity needs to be maintained. We propose a new density reconstruction in time to obtain this property. A second order extension is also suggested and validated. Several test cases show the performances of this new scheme.

When complex Bayesian models exhibit implausible behaviour, one solution is to assemble available information into an informative prior. Challenges arise as prior information is often only available for the observable quantity, or some model-derived marginal quantity, rather than directly pertaining to the natural parameters in our model. We propose a method for translating available prior information, in the form of an elicited distribution for the observable or model-derived marginal quantity, into an informative joint prior. Our approach proceeds given a parametric class of prior distributions with as yet undetermined hyperparameters, and minimises the difference between the supplied elicited distribution and corresponding prior predictive distribution. We employ a global, multi-stage Bayesian optimisation procedure to locate optimal values for the hyperparameters. Three examples illustrate our approach: a cure-fraction survival model, where censoring implies that the observable quantity is a priori a mixed discrete/continuous quantity; a setting in which prior information pertains to $R^{2}$ -- a model-derived quantity; and a nonlinear regression model.

In this thesis, we study problems at the interface of analysis and discrete mathematics. We discuss analogues of well known Hardy-type inequalities and Rearrangement inequalities on the lattice graphs $\mathbb{Z}^d$, with a particular focus on behaviour of sharp constants and optimizers.In the first half of the thesis, we analyse Hardy inequalities on $\mathbb{Z}^d$, first for $d=1$ and then for $d \geq 3$. We prove a sharp weighted Hardy inequality on integers with power weights of the form $n^\alpha$. This is done via two different methods, namely super-solution and Fourier method. We also use Fourier method to prove a weighted Hardy type inequality for higher order operators. After discussing the one dimensional case, we study the Hardy inequality in higher dimensions ($d \geq 3$). In particular, we compute the asymptotic behaviour of the sharp constant in the discrete Hardy inequality, as $d \rightarrow \infty$. This is done by converting the inequality into a continuous Hardy-type inequality on a torus for functions having zero average. These continuous inequalities are new and interesting in themselves. In the second half, we focus our attention on analogues of Rearrangement inequalities on lattice graphs. We begin by analysing the situation in dimension one. We define various notions of rearrangements and prove the corresponding Polya-Szeg\H{o} inequality. These inequalities are also applied to prove some weighted Hardy inequalities on integers. Finally, we study Rearrangement inequalities (Polya-Szeg\H{o}) on general graphs, with a particular focus on lattice graphs $\mathbb{Z}^d$, for $d \geq 2$. We develop a framework to study these inequalities, using which we derive concrete results in dimension two. In particular, these results develop connections between Polya-Szeg\H{o} inequality and various isoperimetric inequalities on graphs.

As language models (LMs) become more capable, it is increasingly important to align them with human preferences. However, the dominant paradigm for training Preference Models (PMs) for that purpose suffers from fundamental limitations, such as lack of transparency and scalability, along with susceptibility to overfitting the preference dataset. We propose Compositional Preference Models (CPMs), a novel PM framework that decomposes one global preference assessment into several interpretable features, obtains scalar scores for these features from a prompted LM, and aggregates these scores using a logistic regression classifier. Through these simple steps, CPMs allow to control which properties of the preference data are used to train the preference model and to build it based on features that are believed to underlie the human preference judgment. Our experiments show that CPMs not only improve generalization and are more robust to overoptimization than standard PMs, but also that best-of-n samples obtained using CPMs tend to be preferred over samples obtained using conventional PMs. Overall, our approach demonstrates the benefits of endowing PMs with priors about which features determine human preferences while relying on LM capabilities to extract those features in a scalable and robust way.

Extremal graphical models encode the conditional independence structure of multivariate extremes and provide a powerful tool for quantifying the risk of rare events. Prior work on learning these graphs from data has focused on the setting where all relevant variables are observed. For the popular class of H\"usler-Reiss models, we propose the \texttt{eglatent} method, a tractable convex program for learning extremal graphical models in the presence of latent variables. Our approach decomposes the H\"usler-Reiss precision matrix into a sparse component encoding the graphical structure among the observed variables after conditioning on the latent variables, and a low-rank component encoding the effect of a few latent variables on the observed variables. We provide finite-sample guarantees of \texttt{eglatent} and show that it consistently recovers the conditional graph as well as the number of latent variables. We highlight the improved performances of our approach on synthetic and real data.

Regression models that incorporate smooth functions of predictor variables to explain the relationships with a response variable have gained widespread usage and proved successful in various applications. By incorporating smooth functions of predictor variables, these models can capture complex relationships between the response and predictors while still allowing for interpretation of the results. In situations where the relationships between a response variable and predictors are explored, it is not uncommon to assume that these relationships adhere to certain shape constraints. Examples of such constraints include monotonicity and convexity. The scam package for R has become a popular package to carry out the full fitting of exponential family generalized additive modelling with shape restrictions on smooths. The paper aims to extend the existing framework of shape-constrained generalized additive models (SCAM) to accommodate smooth interactions of covariates, linear functionals of shape-constrained smooths and incorporation of residual autocorrelation. The methods described in this paper are implemented in the recent version of the package scam, available on the Comprehensive R Archive Network (CRAN).

We study general coordinate-wise MCMC schemes (such as Metropolis-within-Gibbs samplers), which are commonly used to fit Bayesian non-conjugate hierarchical models. We relate their convergence properties to the ones of the corresponding (potentially not implementable) Gibbs sampler through the notion of conditional conductance. This allows us to study the performances of popular Metropolis-within-Gibbs schemes for non-conjugate hierarchical models, in high-dimensional regimes where both number of datapoints and parameters increase. Given random data-generating assumptions, we establish dimension-free convergence results, which are in close accordance with numerical evidences. Applications to Bayesian models for binary regression with unknown hyperparameters and discretely observed diffusions are also discussed. Motivated by such statistical applications, auxiliary results of independent interest on approximate conductances and perturbation of Markov operators are provided.

For regression model selection under the maximum likelihood framework, we study the likelihood ratio confidence region for the regression parameter vector of a full regression model. We show that, when the confidence level increases with the sample size at a certain speed, with probability tending to one, the confidence region contains only vectors representing models having all active variables, including the parameter vector of the true model. This result leads to a consistent model selection criterion with a sparse maximum likelihood interpretation and certain advantages over popular information criteria. It also provides a large-sample characterization of models of maximum likelihood at different model sizes which shows that, for selection consistency, it suffices to consider only this small set of models.

Reconstructing a dynamic object with affine motion in computerized tomography (CT) leads to motion artifacts if the motion is not taken into account. In most cases, the actual motion is neither known nor can be determined easily. As a consequence, the respective model that describes CT is incomplete. The iterative RESESOP-Kaczmarz method can - under certain conditions and by exploiting the modeling error - reconstruct dynamic objects at different time points even if the exact motion is unknown. However, the method is very time-consuming. To speed the reconstruction process up and obtain better results, we combine the following three steps: 1. RESESOP-Kacmarz with only a few iterations is implemented to reconstruct the object at different time points. 2. The motion is estimated via landmark detection, e.g. using deep learning. 3. The estimated motion is integrated into the reconstruction process, allowing the use of dynamic filtered backprojection. We give a short review of all methods involved and present numerical results as a proof of principle.

In logistic regression modeling, Firth's modified estimator is widely used to address the issue of data separation, which results in the nonexistence of the maximum likelihood estimate. Firth's modified estimator can be formulated as a penalized maximum likelihood estimator in which Jeffreys' prior is adopted as the penalty term. Despite its widespread use in practice, the formal verification of the corresponding estimate's existence has not been established. In this study, we establish the existence theorem of Firth's modified estimate in binomial logistic regression models, assuming only the full column rankness of the design matrix. We also discuss multinomial logistic regression models. Unlike the binomial regression case, we show through an example that the Jeffreys-prior penalty term does not necessarily diverge to negative infinity as the parameter diverges.

北京阿比特科技有限公司