亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The hypothesis of conscious machines has been debated since the invention of the notion of artificial intelligence, powered by the assumption that the computational intelligence achieved by a system is the cause of the emergence of phenomenal consciousness in that system as an epiphenomenon or as a consequence of the behavioral or internal complexity of the system surpassing some threshold. As a consequence, a huge amount of literature exploring the possibility of machine consciousness and how to implement it on a computer has been published. Moreover, common folk psychology and transhumanism literature has fed this hypothesis with the popularity of science fiction literature, where intelligent robots are usually antropomorphized and hence given phenomenal consciousness. However, in this work, we argue how these literature lacks scientific rigour, being impossible to falsify the opposite hypothesis, and illustrate a list of arguments that show how every approach that the machine consciousness literature has published depends on philosophical assumptions that cannot be proven by the scientific method. Concretely, we also show how phenomenal consciousness is not computable, independently on the complexity of the algorithm or model, cannot be objectively measured nor quantitatively defined and it is basically a phenomenon that is subjective and internal to the observer. Given all those arguments we end the work arguing why the idea of conscious machines is nowadays a myth of transhumanism and science fiction culture.

相關內容

計算智能(Computational Intelligence)這本領先的國際期刊促進和刺激了人工智能(AI)領域的研究。計算智能涵蓋了從人工智能的工具和語言到其哲學含義的廣泛問題,為實驗和理論研究、調查和影響研究的出版提供了一個活躍的論壇。該雜志是為了滿足學術和工業研究中廣泛的人工智能工作者的需求而設計的。 官網地址:

The integration of artificial intelligence (AI) in educational measurement has revolutionized assessment methods, enabling automated scoring, rapid content analysis, and personalized feedback through machine learning and natural language processing. These advancements provide timely, consistent feedback and valuable insights into student performance, thereby enhancing the assessment experience. However, the deployment of AI in education also raises significant ethical concerns regarding validity, reliability, transparency, fairness, and equity. Issues such as algorithmic bias and the opacity of AI decision-making processes pose risks of perpetuating inequalities and affecting assessment outcomes. Responding to these concerns, various stakeholders, including educators, policymakers, and organizations, have developed guidelines to ensure ethical AI use in education. The National Council of Measurement in Education's Special Interest Group on AI in Measurement and Education (AIME) also focuses on establishing ethical standards and advancing research in this area. In this paper, a diverse group of AIME members examines the ethical implications of AI-powered tools in educational measurement, explores significant challenges such as automation bias and environmental impact, and proposes solutions to ensure AI's responsible and effective use in education.

Operator learning based on neural operators has emerged as a promising paradigm for the data-driven approximation of operators, mapping between infinite-dimensional Banach spaces. Despite significant empirical progress, our theoretical understanding regarding the efficiency of these approximations remains incomplete. This work addresses the parametric complexity of neural operator approximations for the general class of Lipschitz continuous operators. Motivated by recent findings on the limitations of specific architectures, termed curse of parametric complexity, we here adopt an information-theoretic perspective. Our main contribution establishes lower bounds on the metric entropy of Lipschitz operators in two approximation settings; uniform approximation over a compact set of input functions, and approximation in expectation, with input functions drawn from a probability measure. It is shown that these entropy bounds imply that, regardless of the activation function used, neural operator architectures attaining an approximation accuracy $\epsilon$ must have a size that is exponentially large in $\epsilon^{-1}$. The size of architectures is here measured by counting the number of encoded bits necessary to store the given model in computational memory. The results of this work elucidate fundamental trade-offs and limitations in

With the continuous advancement of artificial intelligence, natural language processing technology has become widely utilized in various fields. At the same time, there are many challenges in creating Chinese news summaries. First of all, the semantics of Chinese news is complex, and the amount of information is enormous. Extracting critical information from Chinese news presents a significant challenge. Second, the news summary should be concise and clear, focusing on the main content and avoiding redundancy. In addition, the particularity of the Chinese language, such as polysemy, word segmentation, etc., makes it challenging to generate Chinese news summaries. Based on the above, this paper studies the information extraction method of the LCSTS dataset based on an improved BERTSum-LSTM model. We improve the BERTSum-LSTM model to make it perform better in generating Chinese news summaries. The experimental results show that the proposed method has a good effect on creating news summaries, which is of great importance to the construction of news summaries.

In many situations, the measurements of a studied phenomenon are provided sequentially, and the prediction of its class needs to be made as early as possible so as not to incur too high a time penalty, but not too early and risk paying the cost of misclassification. This problem has been particularly studied in the case of time series, and is known as Early Classification of Time Series (ECTS). Although it has been the subject of a growing body of literature, there is still a lack of a systematic, shared evaluation protocol to compare the relative merits of the various existing methods. This document begins by situating these methods within a principle-based taxonomy. It defines dimensions for organizing their evaluation, and then reports the results of a very extensive set of experiments along these dimensions involving nine state-of-the art ECTS algorithms. In addition, these and other experiments can be carried out using an open-source library in which most of the existing ECTS algorithms have been implemented (see \url{//github.com/ML-EDM/ml_edm}).

Dual quaternion matrices have various applications in robotic research and its spectral theory has been extensively studied in recent years. In this paper, we extend Jacobi method to compute all eigenpairs of dual quaternion Hermitian matrices and establish its convergence. The improved version with elimination strategy is proposed to reduce the computational time. Especially, we present a novel three-step Jacobi method to compute such eigenvalues which have identical standard parts but different dual parts. We prove that the proposed three-step Jacobi method terminates after at most finite iterations and can provide $\epsilon$-approximation of eigenvalue. To the best of our knowledge, both the power method and the Rayleigh quotient iteration method can not handle such eigenvalue problem in this scenario. Numerical experiments illustrate the proposed Jacobi-type algorithms are effective and stable, and also outperform the power method and the Rayleigh quotient iteration method.

Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.

Self-supervised learning, dubbed the dark matter of intelligence, is a promising path to advance machine learning. Yet, much like cooking, training SSL methods is a delicate art with a high barrier to entry. While many components are familiar, successfully training a SSL method involves a dizzying set of choices from the pretext tasks to training hyper-parameters. Our goal is to lower the barrier to entry into SSL research by laying the foundations and latest SSL recipes in the style of a cookbook. We hope to empower the curious researcher to navigate the terrain of methods, understand the role of the various knobs, and gain the know-how required to explore how delicious SSL can be.

Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.

北京阿比特科技有限公司