The deployment of transformers for visual object tracking has shown state-of-the-art results on several benchmarks. However, the transformer-based models are under-utilized for Siamese lightweight tracking due to the computational complexity of their attention blocks. This paper proposes an efficient self and mixed attention transformer-based architecture for lightweight tracking. The proposed backbone utilizes the separable mixed attention transformers to fuse the template and search regions during feature extraction to generate superior feature encoding. Our prediction head performs global contextual modeling of the encoded features by leveraging efficient self-attention blocks for robust target state estimation. With these contributions, the proposed lightweight tracker deploys a transformer-based backbone and head module concurrently for the first time. Our ablation study testifies to the effectiveness of the proposed combination of backbone and head modules. Simulations show that our Separable Self and Mixed Attention-based Tracker, SMAT, surpasses the performance of related lightweight trackers on GOT10k, TrackingNet, LaSOT, NfS30, UAV123, and AVisT datasets, while running at 37 fps on CPU, 158 fps on GPU, and having 3.8M parameters. For example, it significantly surpasses the closely related trackers E.T.Track and MixFormerV2-S on GOT10k-test by a margin of 7.9% and 5.8%, respectively, in the AO metric. The tracker code and model is available at //github.com/goutamyg/SMAT
Deep neural networks (DNNs) often accept high-dimensional media data (e.g., photos, text, and audio) and understand their perceptual content (e.g., a cat). To test DNNs, diverse inputs are needed to trigger mis-predictions. Some preliminary works use byte-level mutations or domain-specific filters (e.g., foggy), whose enabled mutations may be limited and likely error-prone. SOTA works employ deep generative models to generate (infinite) inputs. Also, to keep the mutated inputs perceptually valid (e.g., a cat remains a "cat" after mutation), existing efforts rely on imprecise and less generalizable heuristics. This study revisits two key objectives in media input mutation - perception diversity (DIV) and validity (VAL) - in a rigorous manner based on manifold, a well-developed theory capturing perceptions of high-dimensional media data in a low-dimensional space. We show important results that DIV and VAL inextricably bound each other, and prove that SOTA generative model-based methods fundamentally fail to mutate real-world media data (either sacrificing DIV or VAL). In contrast, we discuss the feasibility of mutating real-world media data with provably high DIV and VAL based on manifold. We concretize the technical solution of mutating media data of various formats (images, audios, text) via a unified manner based on manifold. Specifically, when media data are projected into a low-dimensional manifold, the data can be mutated by walking on the manifold with certain directions and step sizes. When contrasted with the input data, the mutated data exhibit encouraging DIV in the perceptual traits (e.g., lying vs. standing dog) while retaining reasonably high VAL (i.e., a dog remains a dog). We implement our techniques in DEEPWALK for testing DNNs. DEEPWALK outperforms prior methods in testing comprehensiveness and can find more error-triggering inputs with higher quality.
The current state of the art on jamming detection relies on link-layer metrics. A few examples are the bit-error-rate (BER), the packet delivery ratio, the throughput, and the increase in the signal-to-noise ratio (SNR). As a result, these techniques can only detect jamming \emph{ex-post}, i.e., once the attack has already taken down the communication link. These solutions are unfit for mobile devices, e.g., drones, which might lose the connection to the remote controller, being unable to predict the attack. Our solution is rooted in the idea that a drone unknowingly flying toward a jammed area is experiencing an increasing effect of the jamming, e.g., in terms of BER and SNR. Therefore, drones might use the above-mentioned phenomenon to detect jamming before the decrease of the BER and the increase of the SNR completely disrupt the communication link. Such an approach would allow drones and their pilots to make informed decisions and maintain complete control of navigation, enhancing security and safety. This paper proposes Bloodhound+, a solution for jamming detection on mobile devices in low-BER regimes. Our approach analyzes raw physical-layer information (I-Q samples) acquired from the wireless channel. We assemble this information into grayscale images and use sparse autoencoders to detect image anomalies caused by jamming attacks. To test our solution against a wide set of configurations, we acquired a large dataset of indoor measurements using multiple hardware, jamming strategies, and communication parameters. Our results indicate that Bloodhound+ can detect indoor jamming up to 20 meters from the jamming source at the minimum available relative jamming power, with a minimum accuracy of 99.7\%. Our solution is also robust to various sampling rates adopted by the jammer and to the type of signal used for jamming.
Despite the success of Siamese encoder models such as sentence transformers (ST), little is known about the aspects of inputs they pay attention to. A barrier is that their predictions cannot be attributed to individual features, as they compare two inputs rather than processing a single one. This paper derives a local attribution method for Siamese encoders by generalizing the principle of integrated gradients to models with multiple inputs. The solution takes the form of feature-pair attributions, and can be reduced to a token-token matrix for STs. Our method involves the introduction of integrated Jacobians and inherits the advantageous formal properties of integrated gradients: it accounts for the model's full computation graph and is guaranteed to converge to the actual prediction. A pilot study shows that in an ST few token-pairs can often explain large fractions of predictions, and it focuses on nouns and verbs. For accurate predictions, it however needs to attend to the majority of tokens and parts of speech.
Current technological advancements of quantum computers highlight the need for application-driven, practical and well-defined methods of benchmarking their performance. As the existing NISQ device's quality of two-qubit gate errors rate is even around one percent and the number of qubits is still limited to a few or several dozen, naturally, we need to propose rather small algorithms instances taken from key promising application areas, such as quantum chemistry, combinatorial optimisation or machine learning. While many techniques for assessing the performance of logical components such as gate fidelity and qubit coherence exist, it is often challenging to extrapolate those values onto the performance of different quantum algorithms and subroutines. This work aims to introduce a series of initial quantum application benchmarks together with a methodology of execution for measuring performance and fidelity of the results. The proposed suite refers to several variational algorithms, widely-used on current NISQ devices, but also includes examples of quantum circuits designed for a fault-tolerant quantum computer.
With the advancement of data-driven techniques, addressing continuous con-trol challenges has become more efficient. However, the reliance of these methods on historical data introduces the potential for unexpected decisions in novel scenarios. To enhance performance in autonomous driving and collision avoidance, we propose a symbiotic fusion of policy gradient with safety-based control. In this study, we em-ploy the Deep Deterministic Policy Gradient (DDPG) algorithm to enable autono-mous driving in the absence of surrounding vehicles. By training the vehicle's driving policy within a stable and familiar environment, a robust and efficient learning pro-cess is achieved. Subsequently, an artificial potential field approach is utilized to formulate a collision avoidance algorithm, accounting for the presence of surround-ing vehicles. Furthermore, meticulous consideration is given to path tracking meth-ods. The amalgamation of these approaches demonstrates substantial performance across diverse scenarios, underscoring its potential for advancing autonomous driving while upholding safety standards.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.
Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.
Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at //github.com/2051/RSICD_optimal