亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work studies post-training parameter quantization in large language models (LLMs). We introduce quantization with incoherence processing (QuIP), a new method based on the insight that quantization benefits from $\textit{incoherent}$ weight and Hessian matrices, i.e., from the weights being even in magnitude and the directions in which it is important to round them accurately being unaligned with the coordinate axes. QuIP consists of two steps: (1) an adaptive rounding procedure minimizing a quadratic proxy objective; (2) efficient pre- and post-processing that ensures weight and Hessian incoherence via multiplication by random orthogonal matrices. We complement QuIP with the first theoretical analysis for an LLM-scale quantization algorithm, and show that our theory also applies to an existing method, OPTQ. Empirically, we find that our incoherence preprocessing improves several existing quantization algorithms and yields the first LLM quantization methods that produce viable results using only two bits per weight. Our code can be found at //github.com/Cornell-RelaxML/QuIP.

相關內容

大(da)(da)語(yu)(yu)言(yan)模(mo)(mo)(mo)型(xing)是基于海量(liang)文(wen)本(ben)數(shu)據訓(xun)練的(de)(de)深度(du)學習模(mo)(mo)(mo)型(xing)。它不僅能(neng)夠(gou)生(sheng)(sheng)(sheng)成(cheng)自然語(yu)(yu)言(yan)文(wen)本(ben),還能(neng)夠(gou)深入理解文(wen)本(ben)含(han)義,處理各種自然語(yu)(yu)言(yan)任(ren)務(wu)(wu),如文(wen)本(ben)摘要、問(wen)答、翻譯等(deng)。2023年,大(da)(da)語(yu)(yu)言(yan)模(mo)(mo)(mo)型(xing)及(ji)其在人(ren)工智(zhi)(zhi)能(neng)領域的(de)(de)應用(yong)(yong)已(yi)成(cheng)為(wei)全球(qiu)科技(ji)研(yan)究的(de)(de)熱(re)點,其在規模(mo)(mo)(mo)上的(de)(de)增長(chang)尤為(wei)引人(ren)注(zhu)目(mu),參數(shu)量(liang)已(yi)從最初的(de)(de)十幾(ji)億躍(yue)升到(dao)如今的(de)(de)一(yi)萬億。參數(shu)量(liang)的(de)(de)提(ti)升使得模(mo)(mo)(mo)型(xing)能(neng)夠(gou)更加精細地(di)捕捉人(ren)類語(yu)(yu)言(yan)微妙之處,更加深入地(di)理解人(ren)類語(yu)(yu)言(yan)的(de)(de)復(fu)雜性。在過去的(de)(de)一(yi)年里,大(da)(da)語(yu)(yu)言(yan)模(mo)(mo)(mo)型(xing)在吸納新知識、分解復(fu)雜任(ren)務(wu)(wu)以及(ji)圖文(wen)對(dui)齊(qi)等(deng)多方面都(dou)有(you)顯著(zhu)提(ti)升。隨著(zhu)技(ji)術的(de)(de)不斷成(cheng)熟,它將(jiang)不斷拓展(zhan)其應用(yong)(yong)范圍,為(wei)人(ren)類提(ti)供更加智(zhi)(zhi)能(neng)化和個性化的(de)(de)服(fu)務(wu)(wu),進一(yi)步改善人(ren)們的(de)(de)生(sheng)(sheng)(sheng)活和生(sheng)(sheng)(sheng)產方式。

This work studies the general principles of improving the learning of language models (LMs), which aims at reducing the necessary training steps for achieving superior performance. Specifically, we present a theory for the optimal learning of LMs. We first propose an objective that optimizes LM learning by maximizing the data compression ratio in an "LM-training-as-lossless-compression" view. Then, we derive a theorem, named Learning Law, to reveal the properties of the dynamics in the optimal learning process under our objective. The theorem is then validated by experiments on a linear classification and a real-world language modeling task. Finally, we empirically verify that the optimal learning of LMs essentially stems from the improvement of the coefficients in the scaling law of LMs, indicating great promise and significance for designing practical learning acceleration methods. Our code can be found at //aka.ms/LearningLaw.

This study investigates the concept of the `right to be forgotten' within the context of large language models (LLMs). We explore machine unlearning as a pivotal solution, with a focus on pre-trained models--a notably under-researched area. Our research delineates a comprehensive framework for machine unlearning in pre-trained LLMs, encompassing a critical analysis of seven diverse unlearning methods. Through rigorous evaluation using curated datasets from arXiv, books, and GitHub, we establish a robust benchmark for unlearning performance, demonstrating that these methods are over $10^5$ times more computationally efficient than retraining. Our results show that integrating gradient ascent with gradient descent on in-distribution data improves hyperparameter robustness. We also provide detailed guidelines for efficient hyperparameter tuning in the unlearning process. Our findings advance the discourse on ethical AI practices, offering substantive insights into the mechanics of machine unlearning for pre-trained LLMs and underscoring the potential for responsible AI development.

Large language models (LLMs) have demonstrated impressive performance in various natural language processing (NLP) tasks. However, there is limited understanding of how well LLMs perform in specific domains (e.g, the intellectual property (IP) domain). In this paper, we contribute a new benchmark, the first Multilingual-oriented quiZ on Intellectual Property (MoZIP), for the evaluation of LLMs in the IP domain. The MoZIP benchmark includes three challenging tasks: IP multiple-choice quiz (IPQuiz), IP question answering (IPQA), and patent matching (PatentMatch). In addition, we also develop a new IP-oriented multilingual large language model (called MoZi), which is a BLOOMZ-based model that has been supervised fine-tuned with multilingual IP-related text data. We evaluate our proposed MoZi model and four well-known LLMs (i.e., BLOOMZ, BELLE, ChatGLM and ChatGPT) on the MoZIP benchmark. Experimental results demonstrate that MoZi outperforms BLOOMZ, BELLE and ChatGLM by a noticeable margin, while it had lower scores compared with ChatGPT. Notably, the performance of current LLMs on the MoZIP benchmark has much room for improvement, and even the most powerful ChatGPT does not reach the passing level. Our source code, data, and models are available at \url{//github.com/AI-for-Science/MoZi}.

This paper introduces a framework for solving alternating current optimal power flow (ACOPF) problems using graphics processing units (GPUs). While GPUs have demonstrated remarkable performance in various computing domains, their application in ACOPF has been limited due to challenges associated with porting sparse automatic differentiation (AD) and sparse linear solver routines to GPUs. We address these issues with two key strategies. First, we utilize a single-instruction, multiple-data abstraction of nonlinear programs. This approach enables the specification of model equations while preserving their parallelizable structure and, in turn, facilitates the parallel AD implementation. Second, we employ a condensed-space interior-point method (IPM) with an inequality relaxation. This technique involves condensing the Karush--Kuhn--Tucker (KKT) system into a positive definite system. This strategy offers the key advantage of being able to factorize the KKT matrix without numerical pivoting, which has hampered the parallelization of the IPM algorithm. By combining these strategies, we can perform the majority of operations on GPUs while keeping the data residing in the device memory only. Comprehensive numerical benchmark results showcase the advantage of our approach. Remarkably, our implementations -- MadNLP.jl and ExaModels.jl -- running on NVIDIA GPUs achieve an order of magnitude speedup compared with state-of-the-art tools running on contemporary CPUs.

The ever-increasing large language models (LLMs), though opening a potential path for the upcoming artificial general intelligence, sadly drops a daunting obstacle on the way towards their on-device deployment. As one of the most well-established pre-LLMs approaches in reducing model complexity, network pruning appears to lag behind in the era of LLMs, due mostly to its costly fine-tuning (or re-training) necessity under the massive volumes of model parameter and training data. To close this industry-academia gap, we introduce Dynamic Sparse No Training (DSnoT), a training-free fine-tuning approach that slightly updates sparse LLMs without the expensive backpropagation and any weight updates. Inspired by the Dynamic Sparse Training, DSnoT minimizes the reconstruction error between the dense and sparse LLMs, in the fashion of performing iterative weight pruning-and-growing on top of sparse LLMs. To accomplish this purpose, DSnoT particularly takes into account the anticipated reduction in reconstruction error for pruning and growing, as well as the variance w.r.t. different input data for growing each weight. This practice can be executed efficiently in linear time since its obviates the need of backpropagation for fine-tuning LLMs. Extensive experiments on LLaMA-V1/V2, Vicuna, and OPT across various benchmarks demonstrate the effectiveness of DSnoT in enhancing the performance of sparse LLMs, especially at high sparsity levels. For instance, DSnoT is able to outperform the state-of-the-art Wanda by 26.79 perplexity at 70% sparsity with LLaMA-7B. Our paper offers fresh insights into how to fine-tune sparse LLMs in an efficient training-free manner and open new venues to scale the great potential of sparsity to LLMs. Codes are available at //github.com/zyxxmu/DSnoT.

While training large language models (LLMs) from scratch can indeed lead to models with distinct capabilities and strengths, this approach incurs substantial costs and may lead to potential redundancy in competencies. An alternative strategy is to combine existing LLMs into a more robust LLM, thereby diminishing the necessity for expensive pre-training. However, due to the diverse architectures of LLMs, direct parameter blending proves to be unfeasible. Recently, \textsc{FuseLLM} introduced the concept of knowledge fusion to transfer the collective knowledge of multiple structurally varied LLMs into a target LLM through lightweight continual training. In this report, we extend the scalability and flexibility of the \textsc{FuseLLM} framework to realize the fusion of chat LLMs, resulting in \textsc{FuseChat}. \textsc{FuseChat} comprises two main stages. Firstly, we undertake knowledge fusion for structurally and scale-varied source LLMs to derive multiple target LLMs of identical structure and size via lightweight fine-tuning. Then, these target LLMs are merged within the parameter space, wherein we propose a novel method for determining the merging weights based on the variation ratio of parameter matrices before and after fine-tuning. We validate our approach using three prominent chat LLMs with diverse architectures and scales, namely \texttt{NH2-Mixtral-8x7B}, \texttt{NH2-Solar-10.7B}, and \texttt{OpenChat-3.5-7B}. Experimental results spanning various chat domains demonstrate the superiority of \texttt{\textsc{FuseChat}-7B} across a broad spectrum of chat LLMs at 7B and 34B scales, even surpassing \texttt{GPT-3.5 (March)} and approaching \texttt{Mixtral-8x7B-Instruct}. Our code, model weights, and data are openly accessible at \url{//github.com/fanqiwan/FuseLLM}.

This paper proposes an innovative Attention-GAN framework for enhancing cybersecurity, focusing on anomaly detection. In response to the challenges posed by the constantly evolving nature of cyber threats, the proposed approach aims to generate diverse and realistic synthetic attack scenarios, thereby enriching the dataset and improving threat identification. Integrating attention mechanisms with Generative Adversarial Networks (GANs) is a key feature of the proposed method. The attention mechanism enhances the model's ability to focus on relevant features, essential for detecting subtle and complex attack patterns. In addition, GANs address the issue of data scarcity by generating additional varied attack data, encompassing known and emerging threats. This dual approach ensures that the system remains relevant and effective against the continuously evolving cyberattacks. The KDD Cup and CICIDS2017 datasets were used to validate this model, which exhibited significant improvements in anomaly detection. It achieved an accuracy of 99.69% on the KDD dataset and 97.93% on the CICIDS2017 dataset, with precision, recall, and F1-scores above 97%, demonstrating its effectiveness in recognizing complex attack patterns. This study contributes significantly to cybersecurity by providing a scalable and adaptable solution for anomaly detection in the face of sophisticated and dynamic cyber threats. The exploration of GANs for data augmentation highlights a promising direction for future research, particularly in situations where data limitations restrict the development of cybersecurity systems. The attention-GAN framework has emerged as a pioneering approach, setting a new benchmark for advanced cyber-defense strategies.

The growing integration of large language models (LLMs) into social operations amplifies their impact on decisions in crucial areas such as economics, law, education, and healthcare, raising public concerns about these models' discrimination-related safety and reliability. However, prior discrimination measuring frameworks solely assess the average discriminatory behavior of LLMs, often proving inadequate due to the overlook of an additional discrimination-leading factor, i.e., the LLMs' prediction variation across diverse contexts. In this work, we present the Prejudice-Caprice Framework (PCF) that comprehensively measures discrimination in LLMs by considering both their consistently biased preference and preference variation across diverse contexts. Specifically, we mathematically dissect the aggregated contextualized discrimination risk of LLMs into prejudice risk, originating from LLMs' persistent prejudice, and caprice risk, stemming from their generation inconsistency. In addition, we utilize a data-mining approach to gather preference-detecting probes from sentence skeletons, devoid of attribute indications, to approximate LLMs' applied contexts. While initially intended for assessing discrimination in LLMs, our proposed PCF facilitates the comprehensive and flexible measurement of any inductive biases, including knowledge alongside prejudice, across various modality models. We apply our discrimination-measuring framework to 12 common LLMs, yielding intriguing findings: i) modern LLMs demonstrate significant pro-male stereotypes, ii) LLMs' exhibited discrimination correlates with several social and economic factors, iii) prejudice risk dominates the overall discrimination risk and follows a normal distribution, and iv) caprice risk contributes minimally to the overall risk but follows a fat-tailed distribution, suggesting that it is wild risk requiring enhanced surveillance.

Recent work has made a preliminary attempt to use large language models (LLMs) to solve the stance detection task, showing promising results. However, considering that stance detection usually requires detailed background knowledge, the vanilla reasoning method may neglect the domain knowledge to make a professional and accurate analysis. Thus, there is still room for improvement of LLMs reasoning, especially in leveraging the generation capability of LLMs to simulate specific experts (i.e., multi-agents) to detect the stance. In this paper, different from existing multi-agent works that require detailed descriptions and use fixed experts, we propose a Dynamic Experienced Expert Modeling (DEEM) method which can leverage the generated experienced experts and let LLMs reason in a semi-parametric way, making the experts more generalizable and reliable. Experimental results demonstrate that DEEM consistently achieves the best results on three standard benchmarks, outperforms methods with self-consistency reasoning, and reduces the bias of LLMs.

Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.

北京阿比特科技有限公司