亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Word equations are a crucial element in the theoretical foundation of constraint solving over strings. A word equation relates two words over string variables and constants. Its solution amounts to a function mapping variables to constant strings that equate the left and right hand sides of the equation. While the problem of solving word equations is decidable, the decidability of the problem of solving a word equation with a length constraint (i.e., a constraint relating the lengths of words in the word equation) has remained a long-standing open problem. We focus on the subclass of quadratic word equations, i.e., in which each variable occurs at most twice. We first show that the length abstractions of solutions to quadratic word equations are in general not Presburger-definable. We then describe a class of counter systems with Presburger transition relations which capture the length abstraction of a quadratic word equation with regular constraints. We provide an encoding of the effect of a simple loop of the counter systems in the existential theory of Presburger Arithmetic with divisibility (PAD). Since PAD is decidable (NP-hard and is in NEXP), we obtain a decision procedure for quadratic words equations with length constraints for which the associated counter system is flat (i.e., all nodes belong to at most one cycle). In particular, we show a decidability result (in fact, also an NP algorithm with a PAD oracle) for a recently proposed NP-complete fragment of word equations called regular-oriented word equations, when augmented with length constraints. We extend this decidability result (in fact, with a complexity upper bound of PSPACE with a PAD oracle) in the presence of regular constraints.

相關內容

In this paper, we study deep neural networks (DNNs) for solving high-dimensional evolution equations with oscillatory solutions. Different from deep least-squares methods that deal with time and space variables simultaneously, we propose a deep adaptive basis Galerkin (DABG) method which employs the spectral-Galerkin method for time variable by tensor-product basis for oscillatory solutions and the deep neural network method for high-dimensional space variables. The proposed method can lead to a linear system of differential equations having unknown DNNs that can be trained via the loss function. We establish a posterior estimates of the solution error which is bounded by the minimal loss function and the term $O(N^{-m})$, where $N$ is the number of basis functions and $m$ characterizes the regularity of the equation, and show that if the true solution is a Barron-type function, the error bound converges to zero as $M=O(N^p)$ approaches to infinity where $M$ is the width of the used networks and $p$ is a positive constant. Numerical examples including high-dimensional linear parabolic and hyperbolic equations, and nonlinear Allen-Cahn equation are presented to demonstrate the performance of the proposed DABG method is better than that of existing DNNs.

Ensuring security and integrity of elections constitutes an important challenge with wide-ranging societal implications. Classically, security guarantees can be ensured based on computational complexity, which may be challenged by quantum computers. We show that the use of quantum networks can enable information-theoretic security for the desirable aspects of a distributed voting scheme in a resource-efficient manner. In our approach, ballot information is encoded in quantum states that enable an exponential reduction in communication complexity compared to classical communication. In addition, we provide an efficient and secure anonymous queuing protocol. As a result, our scheme only requires modest quantum memories with size scaling logarithmically with the number of voters. This intrinsic efficiency together with certain noise-robustness of our protocol paves the way for its physical implementation in realistic quantum networks.

The mutual information (MI) of Gaussian multi-input multi-output (MIMO) channels has been evaluated by utilizing random matrix theory (RMT) and shown to asymptotically follow Gaussian distribution, where the ergodic mutual information (EMI) converges to a deterministic quantity. However, with non-Gaussian channels, there is a bias between the EMI and its deterministic equivalent (DE), whose evaluation is not available in the literature. This bias of the EMI is related to the bias for the trace of the resolvent in large RMT. In this paper, we first derive the bias for the trace of the resolvent, which is further extended to compute the bias for the linear spectral statistics (LSS). Then, we apply the above results on non-Gaussian MIMO channels to determine the bias for the EMI. It is also proved that the bias for the EMI is $-0.5$ times of that for the variance of the MI. Finally, the derived bias is utilized to modify the central limit theory (CLT) and calculate the outage probability. Numerical results show that the modified CLT significantly outperforms previous methods in approximating the distribution of the MI and improves the accuracy for the outage probability evaluation.

Existing analyses of optimization in deep learning are either continuous, focusing on (variants of) gradient flow, or discrete, directly treating (variants of) gradient descent. Gradient flow is amenable to theoretical analysis, but is stylized and disregards computational efficiency. The extent to which it represents gradient descent is an open question in the theory of deep learning. The current paper studies this question. Viewing gradient descent as an approximate numerical solution to the initial value problem of gradient flow, we find that the degree of approximation depends on the curvature around the gradient flow trajectory. We then show that over deep neural networks with homogeneous activations, gradient flow trajectories enjoy favorable curvature, suggesting they are well approximated by gradient descent. This finding allows us to translate an analysis of gradient flow over deep linear neural networks into a guarantee that gradient descent efficiently converges to global minimum almost surely under random initialization. Experiments suggest that over simple deep neural networks, gradient descent with conventional step size is indeed close to gradient flow. We hypothesize that the theory of gradient flows will unravel mysteries behind deep learning.

We consider large-scale Markov decision processes with an unknown cost function and address the problem of learning a policy from a finite set of expert demonstrations. We assume that the learner is not allowed to interact with the expert and has no access to reinforcement signal of any kind. Existing inverse reinforcement learning methods come with strong theoretical guarantees, but are computationally expensive, while state-of-the-art policy optimization algorithms achieve significant empirical success, but are hampered by limited theoretical understanding. To bridge the gap between theory and practice, we introduce a novel bilinear saddle-point framework using Lagrangian duality. The proposed primal-dual viewpoint allows us to develop a model-free provably efficient algorithm through the lens of stochastic convex optimization. The method enjoys the advantages of simplicity of implementation, low memory requirements, and computational and sample complexities independent of the number of states. We further present an equivalent no-regret online-learning interpretation.

Motivated by many interesting real-world applications in logistics and online advertising, we consider an online allocation problem subject to lower and upper resource constraints, where the requests arrive sequentially, sampled i.i.d. from an unknown distribution, and we need to promptly make a decision given limited resources and lower bounds requirements. First, with knowledge of the measure of feasibility, i.e., $\alpha$, we propose a new algorithm that obtains $1-O(\frac{\epsilon}{\alpha-\epsilon})$ -competitive ratio for the offline problems that know the entire requests ahead of time. Inspired by the previous studies, this algorithm adopts an innovative technique to dynamically update a threshold price vector for making decisions. Moreover, an optimization method to estimate the optimal measure of feasibility is proposed with theoretical guarantee at the end of this paper. Based on this method, if we tolerate slight violation of the lower bounds constraints with parameter $\eta$, the proposed algorithm is naturally extended to the settings without strong feasible assumption, which cover the significantly unexplored infeasible scenarios.

The release of SOSTOOLS v4.00 comes as we approach the 20th anniversary of the original release of SOSTOOLS v1.00 back in April, 2002. SOSTOOLS was originally envisioned as a flexible tool for parsing and solving polynomial optimization problems, using the SOS tightening of polynomial positivity constraints, and capable of adapting to the ever-evolving fauna of applications of SOS. There are now a variety of SOS programming parsers beyond SOSTOOLS, including YALMIP, Gloptipoly, SumOfSquares, and others. We hope SOSTOOLS remains the most intuitive, robust and adaptable toolbox for SOS programming. Recent progress in Semidefinite programming has opened up new possibilities for solving large Sum of Squares programming problems, and we hope the next decade will be one where SOS methods will find wide application in different areas. In SOSTOOLS v4.00, we implement a parsing approach that reduces the computational and memory requirements of the parser below that of the SDP solver itself. We have re-developed the internal structure of our polynomial decision variables. Specifically, polynomial and SOS variable declarations made using sossosvar, sospolyvar, sosmatrixvar, etc now return a new polynomial structure, dpvar. This new polynomial structure, is documented in the enclosed dpvar guide, and isolates the scalar SDP decision variables in the SOS program from the independent variables used to construct the SOS program. As a result, the complexity of the parser scales almost linearly in the number of decision variables. As a result of these changes, almost all users will notice a significant increase in speed, with large-scaleproblems experiencing the most dramatic speedups. Parsing time is now always less than 10% of time spent in the SDP solver. Finally, SOSTOOLS now provides support for the MOSEK solver interface as well as the SeDuMi, SDPT3, CSDP, SDPNAL, SDPNAL+, and SDPA solvers.

Importance sampling is one of the most widely used variance reduction strategies in Monte Carlo rendering. In this paper, we propose a novel importance sampling technique that uses a neural network to learn how to sample from a desired density represented by a set of samples. Our approach considers an existing Monte Carlo rendering algorithm as a black box. During a scene-dependent training phase, we learn to generate samples with a desired density in the primary sample space of the rendering algorithm using maximum likelihood estimation. We leverage a recent neural network architecture that was designed to represent real-valued non-volume preserving ('Real NVP') transformations in high dimensional spaces. We use Real NVP to non-linearly warp primary sample space and obtain desired densities. In addition, Real NVP efficiently computes the determinant of the Jacobian of the warp, which is required to implement the change of integration variables implied by the warp. A main advantage of our approach is that it is agnostic of underlying light transport effects, and can be combined with many existing rendering techniques by treating them as a black box. We show that our approach leads to effective variance reduction in several practical scenarios.

In NMT, words are sometimes dropped from the source or generated repeatedly in the translation. We explore novel strategies to address the coverage problem that change only the attention transformation. Our approach allocates fertilities to source words, used to bound the attention each word can receive. We experiment with various sparse and constrained attention transformations and propose a new one, constrained sparsemax, shown to be differentiable and sparse. Empirical evaluation is provided in three languages pairs.

Despite the impressive quality improvements yielded by neural machine translation (NMT) systems, controlling their translation output to adhere to user-provided terminology constraints remains an open problem. We describe our approach to constrained neural decoding based on finite-state machines and multi-stack decoding which supports target-side constraints as well as constraints with corresponding aligned input text spans. We demonstrate the performance of our framework on multiple translation tasks and motivate the need for constrained decoding with attentions as a means of reducing misplacement and duplication when translating user constraints.

北京阿比特科技有限公司