亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Objective: Information retrieval (IR, also known as search) systems are ubiquitous in modern times. How does the emergence of generative artificial intelligence (AI), based on large language models (LLMs), fit into the IR process? Process: This perspective explores the use of generative AI in the context of the motivations, considerations, and outcomes of the IR process with a focus on the academic use of such systems. Conclusions: There are many information needs, from simple to complex, that motivate use of IR. Users of such systems, particularly academics, have concerns for authoritativeness, timeliness, and contextualization of search. While LLMs may provide functionality that aids the IR process, the continued need for search systems, and research into their improvement, remains essential.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 自動問答 · 有偏 · 穩健性 · Performer ·
2024 年 2 月 6 日

While the Large Language Models (LLMs) dominate a majority of language understanding tasks, previous work shows that some of these results are supported by modelling spurious correlations of training datasets. Authors commonly assess model robustness by evaluating their models on out-of-distribution (OOD) datasets of the same task, but these datasets might share the bias of the training dataset. We propose a simple method for measuring a scale of models' reliance on any identified spurious feature and assess the robustness towards a large set of known and newly found prediction biases for various pre-trained models and debiasing methods in Question Answering (QA). We find that while existing debiasing methods can mitigate reliance on a chosen spurious feature, the OOD performance gains of these methods can not be explained by mitigated reliance on biased features, suggesting that biases are shared among different QA datasets. Finally, we evidence this to be the case by measuring that the performance of models trained on different QA datasets relies comparably on the same bias features. We hope these results will motivate future work to refine the reports of LMs' robustness to a level of adversarial samples addressing specific spurious features.

The discourse around conspiracy theories is currently thriving amidst the rampant misinformation in online environments. Research in this field has been focused on detecting conspiracy theories on social media, often relying on limited datasets. In this study, we present a novel methodology for constructing a Twitter dataset that encompasses accounts engaged in conspiracy-related activities throughout the year 2022. Our approach centers on data collection that is independent of specific conspiracy theories and information operations. Additionally, our dataset includes a control group comprising randomly selected users who can be fairly compared to the individuals involved in conspiracy activities. This comprehensive collection effort yielded a total of 15K accounts and 37M tweets extracted from their timelines. We conduct a comparative analysis of the two groups across three dimensions: topics, profiles, and behavioral characteristics. The results indicate that conspiracy and control users exhibit similarity in terms of their profile metadata characteristics. However, they diverge significantly in terms of behavior and activity, particularly regarding the discussed topics, the terminology used, and their stance on trending subjects. In addition, we find no significant disparity in the presence of bot users between the two groups. Finally, we develop a classifier to identify conspiracy users using features borrowed from bot, troll and linguistic literature. The results demonstrate a high accuracy level (with an F1 score of 0.94), enabling us to uncover the most discriminating features associated with conspiracy-related accounts.

In the exciting generative AI era, the diffusion model has emerged as a very powerful and widely adopted content generation and editing tool for various data modalities, making the study of their potential security risks very necessary and critical. Very recently, some pioneering works have shown the vulnerability of the diffusion model against backdoor attacks, calling for in-depth analysis and investigation of the security challenges of this popular and fundamental AI technique. In this paper, for the first time, we systematically explore the detectability of the poisoned noise input for the backdoored diffusion models, an important performance metric yet little explored in the existing works. Starting from the perspective of a defender, we first analyze the properties of the trigger pattern in the existing diffusion backdoor attacks, discovering the important role of distribution discrepancy in Trojan detection. Based on this finding, we propose a low-cost trigger detection mechanism that can effectively identify the poisoned input noise. We then take a further step to study the same problem from the attack side, proposing a backdoor attack strategy that can learn the unnoticeable trigger to evade our proposed detection scheme. Empirical evaluations across various diffusion models and datasets demonstrate the effectiveness of the proposed trigger detection and detection-evading attack strategy. For trigger detection, our distribution discrepancy-based solution can achieve a 100\% detection rate for the Trojan triggers used in the existing works. For evading trigger detection, our proposed stealthy trigger design approach performs end-to-end learning to make the distribution of poisoned noise input approach that of benign noise, enabling nearly 100\% detection pass rate with very high attack and benign performance for the backdoored diffusion models.

The collaboration of the real world and the virtual world, known as Digital Twin, has become a trend with numerous successful use cases. However, there are challenges mentioned in the literature that must be addressed. One of the most important issues is the difficulty of collaboration of Digital Twins due to the lack of standardization in their implementation. This article continues a previous work that proposed a generic architecture based on the FIWARE components to build Digital Twins in any field. Our work proposes the use of Linked Open Data as a mechanism to facilitate the communication of Digital Twins. We validate our proposal with a use case of an urban Digital Twin that collaborates with a parking Digital Twin. We conclude that Linked Open Data in combination with the FIWARE ecosystem is a real reference option to deploy Digital Twins and to enable the collaboration between Digital Twins.

A vast number of systems across the world use algorithmic decision making (ADM) to (partially) automate decisions that have previously been made by humans. The downstream effects of ADM systems critically depend on the decisions made during a systems' design, implementation, and evaluation, as biases in data can be mitigated or reinforced along the modeling pipeline. Many of these decisions are made implicitly, without knowing exactly how they will influence the final system. To study this issue, we draw on insights from the field of psychology and introduce the method of multiverse analysis for algorithmic fairness. In our proposed method, we turn implicit decisions during design and evaluation into explicit ones and demonstrate their fairness implications. By combining decisions, we create a grid of all possible "universes" of decision combinations. For each of these universes, we compute metrics of fairness and performance. Using the resulting dataset, one can investigate the variability and robustness of fairness scores and see how and which decisions impact fairness. We demonstrate how multiverse analyses can be used to better understand fairness implications of design and evaluation decisions using an exemplary case study of predicting public health care coverage for vulnerable populations. Our results highlight how decisions regarding the evaluation of a system can lead to vastly different fairness metrics for the same model. This is problematic, as a nefarious actor could optimise or "hack" a fairness metric to portray a discriminating model as fair merely by changing how it is evaluated. We illustrate how a multiverse analysis can help to address this issue.

In the field of natural language processing (NLP), Large Language Models (LLMs) have precipitated a paradigm shift, markedly enhancing performance in natural language generation tasks. Despite these advancements, the comprehensive evaluation of LLMs remains an inevitable challenge for the community. Recently, the utilization of Multiple Choice Question Answering (MCQA) as a benchmark for LLMs has gained considerable traction. This study investigates the rationality of MCQA as an evaluation method for LLMs. If LLMs genuinely understand the semantics of questions, their performance should exhibit consistency across the varied configurations derived from the same questions. Contrary to this expectation, our empirical findings suggest a notable disparity in the consistency of LLM responses, which we define as REsponse VAriability Syndrome (REVAS) of the LLMs, indicating that current MCQA-based benchmarks may not adequately capture the true capabilities of LLMs, which underscores the need for more robust evaluation mechanisms in assessing the performance of LLMs.

Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

The era of big data provides researchers with convenient access to copious data. However, people often have little knowledge about it. The increasing prevalence of big data is challenging the traditional methods of learning causality because they are developed for the cases with limited amount of data and solid prior causal knowledge. This survey aims to close the gap between big data and learning causality with a comprehensive and structured review of traditional and frontier methods and a discussion about some open problems of learning causality. We begin with preliminaries of learning causality. Then we categorize and revisit methods of learning causality for the typical problems and data types. After that, we discuss the connections between learning causality and machine learning. At the end, some open problems are presented to show the great potential of learning causality with data.

北京阿比特科技有限公司