亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Over the last few decades, various methods have been proposed for estimating prediction intervals in regression settings, including Bayesian methods, ensemble methods, direct interval estimation methods and conformal prediction methods. An important issue is the calibration of these methods: the generated prediction intervals should have a predefined coverage level, without being overly conservative. In this work, we review the above four classes of methods from a conceptual and experimental point of view. Results on benchmark data sets from various domains highlight large fluctuations in performance from one data set to another. These observations can be attributed to the violation of certain assumptions that are inherent to some classes of methods. We illustrate how conformal prediction can be used as a general calibration procedure for methods that deliver poor results without a calibration step.

相關內容

Subset selection is a valuable tool for interpretable learning, scientific discovery, and data compression. However, classical subset selection is often avoided due to selection instability, lack of regularization, and difficulties with post-selection inference. We address these challenges from a Bayesian perspective. Given any Bayesian predictive model $\mathcal{M}$, we extract a family of near-optimal subsets of variables for linear prediction or classification. This strategy deemphasizes the role of a single "best" subset and instead advances the broader perspective that often many subsets are highly competitive. The acceptable family of subsets offers a new pathway for model interpretation and is neatly summarized by key members such as the smallest acceptable subset, along with new (co-) variable importance metrics based on whether variables (co-) appear in all, some, or no acceptable subsets. More broadly, we apply Bayesian decision analysis to derive the optimal linear coefficients for any subset of variables. These coefficients inherit both regularization and predictive uncertainty quantification via $\mathcal{M}$. For both simulated and real data, the proposed approach exhibits better prediction, interval estimation, and variable selection than competing Bayesian and frequentist selection methods. These tools are applied to a large education dataset with highly correlated covariates. Our analysis provides unique insights into the combination of environmental, socioeconomic, and demographic factors that predict educational outcomes, and identifies over 200 distinct subsets of variables that offer near-optimal out-of-sample predictive accuracy.

In spite of its high practical relevance, cluster specific multiple inference for linear mixed model predictors has hardly been addressed so far. While marginal inference for population parameters is well understood, conditional inference for the cluster specific predictors is more intricate. This work introduces a general framework for multiple inference in linear mixed models for cluster specific predictors. Consistent confidence sets for multiple inference are constructed under both, the marginal and the conditional law. Furthermore, it is shown that, remarkably, corresponding multiple marginal confidence sets are also asymptotically valid for conditional inference. Those lend themselves for testing linear hypotheses using standard quantiles without the need of re-sampling techniques. All findings are validated in simulations and illustrated along a study on Covid-19 mortality in US state prisons.

We develop methodology for testing hypotheses regarding the slope function in functional linear regression for time series via a reproducing kernel Hilbert space approach. In contrast to most of the literature, which considers tests for the exact nullity of the slope function, we are interested in the null hypothesis that the slope function vanishes only approximately, where deviations are measured with respect to the $L^2$-norm. An asymptotically pivotal test is proposed, which does not require the estimation of nuisance parameters and long-run covariances. The key technical tools to prove the validity of our approach include a uniform Bahadur representation and a weak invariance principle for a sequential process of estimates of the slope function. Both scalar-on-function and function-on-function linear regression are considered and finite-sample methods for implementing our methodology are provided. We also illustrate the potential of our methods by means of a small simulation study and a data example.

Uncertainty quantification of predictive models is crucial in decision-making problems. Conformal prediction is a general and theoretically sound answer. However, it requires exchangeable data, excluding time series. While recent works tackled this issue, we argue that Adaptive Conformal Inference (ACI, Gibbs and Cand{\`e}s, 2021), developed for distribution-shift time series, is a good procedure for time series with general dependency. We theoretically analyse the impact of the learning rate on its efficiency in the exchangeable and auto-regressive case. We propose a parameter-free method, AgACI, that adaptively builds upon ACI based on online expert aggregation. We lead extensive fair simulations against competing methods that advocate for ACI's use in time series. We conduct a real case study: electricity price forecasting. The proposed aggregation algorithm provides efficient prediction intervals for day-ahead forecasting. All the code and data to reproduce the experiments is made available.

Many statistical estimators for high-dimensional linear regression are M-estimators, formed through minimizing a data-dependent square loss function plus a regularizer. This work considers a new class of estimators implicitly defined through a discretized gradient dynamic system under overparameterization. We show that under suitable restricted isometry conditions, overparameterization leads to implicit regularization: if we directly apply gradient descent to the residual sum of squares with sufficiently small initial values, then under some proper early stopping rule, the iterates converge to a nearly sparse rate-optimal solution that improves over explicitly regularized approaches. In particular, the resulting estimator does not suffer from extra bias due to explicit penalties, and can achieve the parametric root-n rate when the signal-to-noise ratio is sufficiently high. We also perform simulations to compare our methods with high dimensional linear regression with explicit regularization. Our results illustrate the advantages of using implicit regularization via gradient descent after overparameterization in sparse vector estimation.

We study the benign overfitting theory in the prediction of the conditional average treatment effect (CATE), with linear regression models. As the development of machine learning for causal inference, a wide range of large-scale models for causality are gaining attention. One problem is that suspicions have been raised that the large-scale models are prone to overfitting to observations with sample selection, hence the large models may not be suitable for causal prediction. In this study, to resolve the suspicious, we investigate on the validity of causal inference methods for overparameterized models, by applying the recent theory of benign overfitting (Bartlett et al., 2020). Specifically, we consider samples whose distribution switches depending on an assignment rule, and study the prediction of CATE with linear models whose dimension diverges to infinity. We focus on two methods: the T-learner, which based on a difference between separately constructed estimators with each treatment group, and the inverse probability weight (IPW)-learner, which solves another regression problem approximated by a propensity score. In both methods, the estimator consists of interpolators that fit the samples perfectly. As a result, we show that the T-learner fails to achieve the consistency except the random assignment, while the IPW-learner converges the risk to zero if the propensity score is known. This difference stems from that the T-learner is unable to preserve eigenspaces of the covariances, which is necessary for benign overfitting in the overparameterized setting. Our result provides new insights into the usage of causal inference methods in the overparameterizated setting, in particular, doubly robust estimators.

In many real-world deployments of machine learning, we use a prediction algorithm to choose what data to test next. For example, in the protein design problem, we have a regression model that predicts some real-valued property of a protein sequence, which we use to propose new sequences believed to exhibit higher property values than observed in the training data. Since validating designed sequences in the wet lab is typically costly, it is important to know how much we can trust the model's predictions. In such settings, however, there is a distinct type of distribution shift between the training and test data: one where the training and test data are statistically dependent, as the latter is chosen based on the former. Consequently, the model's error on the test data -- that is, the designed sequences -- has some non-trivial relationship with its error on the training data. Herein, we introduce a method to quantify predictive uncertainty in such settings. We do so by constructing confidence sets for predictions that account for the dependence between the training and test data. The confidence sets we construct have finite-sample guarantees that hold for any prediction algorithm, even when a trained model chooses the test-time input distribution. As a motivating use case, we demonstrate how our method quantifies uncertainty for the predicted fitness of designed protein using several real data sets.

We study full Bayesian procedures for high-dimensional linear regression. We adopt data-dependent empirical priors introduced in [1]. In their paper, these priors have nice posterior contraction properties and are easy to compute. Our paper extend their theoretical results to the case of unknown error variance . Under proper sparsity assumption, we achieve model selection consistency, posterior contraction rates as well as Bernstein von-Mises theorem by analyzing multivariate t-distribution.

Heatmap-based methods dominate in the field of human pose estimation by modelling the output distribution through likelihood heatmaps. In contrast, regression-based methods are more efficient but suffer from inferior performance. In this work, we explore maximum likelihood estimation (MLE) to develop an efficient and effective regression-based methods. From the perspective of MLE, adopting different regression losses is making different assumptions about the output density function. A density function closer to the true distribution leads to a better regression performance. In light of this, we propose a novel regression paradigm with Residual Log-likelihood Estimation (RLE) to capture the underlying output distribution. Concretely, RLE learns the change of the distribution instead of the unreferenced underlying distribution to facilitate the training process. With the proposed reparameterization design, our method is compatible with off-the-shelf flow models. The proposed method is effective, efficient and flexible. We show its potential in various human pose estimation tasks with comprehensive experiments. Compared to the conventional regression paradigm, regression with RLE bring 12.4 mAP improvement on MSCOCO without any test-time overhead. Moreover, for the first time, especially on multi-person pose estimation, our regression method is superior to the heatmap-based methods. Our code is available at //github.com/Jeff-sjtu/res-loglikelihood-regression

Intersection over Union (IoU) is the most popular evaluation metric used in the object detection benchmarks. However, there is a gap between optimizing the commonly used distance losses for regressing the parameters of a bounding box and maximizing this metric value. The optimal objective for a metric is the metric itself. In the case of axis-aligned 2D bounding boxes, it can be shown that $IoU$ can be directly used as a regression loss. However, $IoU$ has a plateau making it infeasible to optimize in the case of non-overlapping bounding boxes. In this paper, we address the weaknesses of $IoU$ by introducing a generalized version as both a new loss and a new metric. By incorporating this generalized $IoU$ ($GIoU$) as a loss into the state-of-the art object detection frameworks, we show a consistent improvement on their performance using both the standard, $IoU$ based, and new, $GIoU$ based, performance measures on popular object detection benchmarks such as PASCAL VOC and MS COCO.

北京阿比特科技有限公司