亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce Graph of Thoughts (GoT): a framework that advances prompting capabilities in large language models (LLMs) beyond those offered by paradigms such as Chain-ofThought or Tree of Thoughts (ToT). The key idea and primary advantage of GoT is the ability to model the information generated by an LLM as an arbitrary graph, where units of information ("LLM thoughts") are vertices, and edges correspond to dependencies between these vertices. This approach enables combining arbitrary LLM thoughts into synergistic outcomes, distilling the essence of whole networks of thoughts, or enhancing thoughts using feedback loops. We illustrate that GoT offers advantages over state of the art on different tasks, for example increasing the quality of sorting by 62% over ToT, while simultaneously reducing costs by >31%. We ensure that GoT is extensible with new thought transformations and thus can be used to spearhead new prompting schemes. This work brings the LLM reasoning closer to human thinking or brain mechanisms such as recurrence, both of which form complex networks.

相關內容

Retrieving documents and prepending them in-context at inference time improves performance of language model (LMs) on a wide range of tasks. However, these documents, often spanning hundreds of words, make inference substantially more expensive. We propose compressing the retrieved documents into textual summaries prior to in-context integration. This not only reduces the computational costs but also relieves the burden of LMs to identify relevant information in long retrieved documents. We present two compressors -- an extractive compressor which selects useful sentences from retrieved documents and an abstractive compressor which generates summaries by synthesizing information from multiple documents. Both compressors are trained to improve LMs' performance on end tasks when the generated summaries are prepended to the LMs' input, while keeping the summary concise.If the retrieved documents are irrelevant to the input or offer no additional information to LM, our compressor can return an empty string, implementing selective augmentation.We evaluate our approach on language modeling task and open domain question answering task. We achieve a compression rate of as low as 6% with minimal loss in performance for both tasks, significantly outperforming the off-the-shelf summarization models. We show that our compressors trained for one LM can transfer to other LMs on the language modeling task and provide summaries largely faithful to the retrieved documents.

Recent advancements in the field of Natural Language Processing, particularly the development of large-scale language models that are pretrained on vast amounts of knowledge, are creating novel opportunities within the realm of Knowledge Engineering. In this paper, we investigate the usage of large language models (LLMs) in both zero-shot and in-context learning settings to tackle the problem of extracting procedures from unstructured PDF text in an incremental question-answering fashion. In particular, we leverage the current state-of-the-art GPT-4 (Generative Pre-trained Transformer 4) model, accompanied by two variations of in-context learning that involve an ontology with definitions of procedures and steps and a limited number of samples of few-shot learning. The findings highlight both the promise of this approach and the value of the in-context learning customisations. These modifications have the potential to significantly address the challenge of obtaining sufficient training data, a hurdle often encountered in deep learning-based Natural Language Processing techniques for procedure extraction.

Vision-language models (VLMs) are impactful in part because they can be applied to a variety of visual understanding tasks in a zero-shot fashion, without any fine-tuning. We study $\textit{generative VLMs}$ that are trained for next-word generation given an image. We explore their zero-shot performance on the illustrative task of image-text retrieval across 8 popular vision-language benchmarks. Our first observation is that they can be repurposed for discriminative tasks (such as image-text retrieval) by simply computing the match score of generating a particular text string given an image. We call this probabilistic score the $\textit{Visual Generative Pre-Training Score}$ (VisualGPTScore). While the VisualGPTScore produces near-perfect accuracy on some retrieval benchmarks, it yields poor accuracy on others. We analyze this behavior through a probabilistic lens, pointing out that some benchmarks inadvertently capture unnatural language distributions by creating adversarial but unlikely text captions. In fact, we demonstrate that even a "blind" language model that ignores any image evidence can sometimes outperform all prior art, reminiscent of similar challenges faced by the visual-question answering (VQA) community many years ago. We derive a probabilistic post-processing scheme that controls for the amount of linguistic bias in generative VLMs at test time without having to retrain or fine-tune the model. We show that the VisualGPTScore, when appropriately debiased, is a strong zero-shot baseline for vision-language understanding, oftentimes producing state-of-the-art accuracy.

Increasing the context length of large language models (LLMs) unlocks fundamentally new capabilities, but also significantly increases the memory footprints of training. Previous model-parallel systems such as Megatron-LM partition and compute different attention heads in parallel, resulting in large communication volumes, so they cannot scale beyond the number of attention heads, thereby hindering its adoption. In this paper, we introduce a new approach, LightSeq, for long-context LLMs training. LightSeq has many notable advantages. First, LightSeq partitions over the sequence dimension, hence is agnostic to model architectures and readily applicable for models with varying numbers of attention heads, such as Multi-Head, Multi-Query and Grouped-Query attention. Second, LightSeq not only requires up to 4.7x less communication than Megatron-LM on popular LLMs but also overlaps the communication with computation. To further reduce the training time, LightSeq features a novel gradient checkpointing scheme to bypass an forward computation for memory-efficient attention. We evaluate LightSeq on Llama-7B and its variants with sequence lengths from 32K to 512K. Through comprehensive experiments on single and cross-node training, we show that LightSeq achieves up to 1.24-2.01x end-to-end speedup, and a 2-8x longer sequence length on models with fewer heads, compared to Megatron-LM. Codes will be available at //github.com/RulinShao/LightSeq.

In this paper, we propose ``SimVLG'', a streamlined framework for the pre-training of computationally intensive vision-language generative models, leveraging frozen pre-trained large language models (LLMs). The prevailing paradigm in vision-language pre-training (VLP) typically involves a two-stage optimization process: an initial resource-intensive phase dedicated to general-purpose vision-language representation learning, aimed at extracting and consolidating pertinent visual features, followed by a subsequent phase focusing on end-to-end alignment between visual and linguistic modalities. Our one-stage, single-loss framework circumvents the aforementioned computationally demanding first stage of training by gradually merging similar visual tokens during training. This gradual merging process effectively compacts the visual information while preserving the richness of semantic content, leading to fast convergence without sacrificing performance. Our experiments show that our approach can speed up the training of vision-language models by a factor $\times 5$ without noticeable impact on the overall performance. Additionally, we show that our models can achieve comparable performance to current vision-language models with only $1/10$ of the data. Finally, we demonstrate how our image-text models can be easily adapted to video-language generative tasks through a novel soft attentive temporal token merging modules.

Large language models (LLMs) have exploded in popularity due to their new generative capabilities that go far beyond prior state-of-the-art. These technologies are increasingly being leveraged in various domains such as law, finance, and medicine. However, these models carry significant computational challenges, especially the compute and energy costs required for inference. Inference energy costs already receive less attention than the energy costs of training LLMs -- despite how often these large models are called on to conduct inference in reality (e.g., ChatGPT). As these state-of-the-art LLMs see increasing usage and deployment in various domains, a better understanding of their resource utilization is crucial for cost-savings, scaling performance, efficient hardware usage, and optimal inference strategies. In this paper, we describe experiments conducted to study the computational and energy utilization of inference with LLMs. We benchmark and conduct a preliminary analysis of the inference performance and inference energy costs of different sizes of LLaMA -- a recent state-of-the-art LLM -- developed by Meta AI on two generations of popular GPUs (NVIDIA V100 \& A100) and two datasets (Alpaca and GSM8K) to reflect the diverse set of tasks/benchmarks for LLMs in research and practice. We present the results of multi-node, multi-GPU inference using model sharding across up to 32 GPUs. To our knowledge, our work is the one of the first to study LLM inference performance from the perspective of computational and energy resources at this scale.

Recent studies have demonstrated promising outcomes by employing large language models with multi-tasking capabilities. They utilize prompts to guide the model's behavior and surpass performance of task-specific models. Motivated by this, we ask: can we build a single model that jointly perform various spoken language understanding (SLU) tasks? To address this, we utilize pre-trained automatic speech recognition (ASR) models and employ various task and dataset specifiers as discrete prompts. We demonstrate efficacy of our single multi-task learning (MTL) model "UniverSLU" for 12 different speech classification and sequence generation tasks across 17 datasets and 9 languages. Results show that UniverSLU achieves competitive performance and even surpasses task-specific models. We also conduct preliminary investigations into enabling human-interpretable natural phrases instead of task specifiers as discrete prompts and test the model's generalization capabilities to new paraphrases.

Large language models (LLMs), known for their capability in understanding and following instructions, are vulnerable to adversarial attacks. Researchers have found that current commercial LLMs either fail to be "harmless" by presenting unethical answers, or fail to be "helpful" by refusing to offer meaningful answers when faced with adversarial queries. To strike a balance between being helpful and harmless, we design a moving target defense (MTD) enhanced LLM system. The system aims to deliver non-toxic answers that align with outputs from multiple model candidates, making them more robust against adversarial attacks. We design a query and output analysis model to filter out unsafe or non-responsive answers. %to achieve the two objectives of randomly selecting outputs from different LLMs. We evaluate over 8 most recent chatbot models with state-of-the-art adversarial queries. Our MTD-enhanced LLM system reduces the attack success rate from 37.5\% to 0\%. Meanwhile, it decreases the response refusal rate from 50\% to 0\%.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

The problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs) presents two challenges: given a QA context (question and answer choice), methods need to (i) identify relevant knowledge from large KGs, and (ii) perform joint reasoning over the QA context and KG. In this work, we propose a new model, QA-GNN, which addresses the above challenges through two key innovations: (i) relevance scoring, where we use LMs to estimate the importance of KG nodes relative to the given QA context, and (ii) joint reasoning, where we connect the QA context and KG to form a joint graph, and mutually update their representations through graph neural networks. We evaluate QA-GNN on the CommonsenseQA and OpenBookQA datasets, and show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning, e.g., correctly handling negation in questions.

北京阿比特科技有限公司